
Reliable group communication

with JGroups 3.x

by Bela Ban (Red Hat, Inc.) and Vladimir Blagojevic (Red Hat, Inc.)

iii

Preface ... ix

1. Overview .. 1

1.1. Channel ... 2

1.2. Building Blocks ... 3

1.3. The Protocol Stack ... 3

2. Installation and Configuration ... 5

2.1. Requirements ... 5

2.2. Structure of the source version .. 5

2.3. Building JGroups (source distribution only) ... 5

2.4. Logging .. 6

2.4.1. log4j2 .. 6

2.4.2. log4j .. 7

2.4.3. JDK logging (JUL) .. 7

2.4.4. Support for custom logging frameworks ... 7

2.5. Testing your Setup ... 7

2.6. Running a Demo Program ... 8

2.7. Using IP Multicasting without a network connection ... 8

2.8. It doesn't work ! .. 9

2.9. Problems with IPv6 ... 9

2.10. Wiki .. 10

2.11. I have discovered a bug ! .. 10

2.12. Supported classes ... 10

2.12.1. Experimental .. 10

2.12.2. Unsupported .. 11

3. API ... 13

3.1. Utility classes .. 13

3.1.1. objectToByteBuffer(), objectFromByteBuffer() ... 13

3.1.2. objectToStream(), objectFromStream() .. 13

3.2. Interfaces ... 13

3.2.1. MessageListener .. 13

3.2.2. MembershipListener ... 14

3.2.3. Receiver .. 15

3.2.4. ReceiverAdapter ... 15

3.2.5. ChannelListener ... 16

3.3. Address .. 16

3.4. Message .. 17

3.5. Header ... 18

3.6. Event ... 18

3.7. View ... 19

3.7.1. ViewId ... 19

3.7.2. MergeView ... 19

3.8. JChannel .. 20

3.8.1. Creating a channel ... 20

3.8.2. Giving the channel a logical name ... 25

Reliable group communication ...

iv

3.8.3. Generating custom addresses ... 25

3.8.4. Joining a cluster ... 26

3.8.5. Joining a cluster and getting the state in one operation 27

3.8.6. Getting the local address and the cluster name .. 27

3.8.7. Getting the current view ... 27

3.8.8. Sending messages ... 28

3.8.9. Receiving messages .. 30

3.8.10. Receiving view changes ... 31

3.8.11. Getting the group's state ... 31

3.8.12. Disconnecting from a channel ... 34

3.8.13. Closing a channel .. 34

4. Building Blocks ... 35

4.1. MessageDispatcher ... 35

4.1.1. RequestOptions .. 36

4.1.2. Requests and target destinations .. 38

4.1.3. Example .. 39

4.2. RpcDispatcher .. 40

4.2.1. Example .. 41

4.2.2. Response filters ... 43

4.3. Asynchronous invocation in MessageDispatcher and RpcDispatcher 45

4.4. ReplicatedHashMap .. 47

4.5. ReplCache .. 48

4.6. Cluster wide locking .. 48

4.6.1. Locking and merges ... 49

4.7. Cluster wide task execution ... 50

4.8. Cluster wide atomic counters ... 52

4.8.1. Design ... 54

5. Advanced Concepts ... 57

5.1. Using multiple channels .. 57

5.2. Sharing a transport between multiple channels in a JVM 57

5.3. Transport protocols ... 60

5.3.1. Message bundling .. 63

5.3.2. UDP .. 65

5.3.3. TCP ... 66

5.3.4. TUNNEL .. 68

5.4. The concurrent stack .. 70

5.4.1. Overview ... 71

5.4.2. Elimination of up and down threads ... 74

5.4.3. Concurrent message delivery .. 75

5.4.4. Scopes: concurrent message delivery for messages from the same sender .. 75

5.4.5. Out-of-band messages ... 76

5.4.6. Replacing the default and OOB thread pools .. 77

5.4.7. Sharing of thread pools between channels in the same JVM 78

5.5. Using a custom socket factory ... 78

v

5.6. Handling network partitions .. 79

5.6.1. Merging substates .. 80

5.6.2. The primary partition approach .. 80

5.6.3. The Split Brain syndrome and primary partitions 82

5.7. Flushing: making sure every node in the cluster received a message 83

5.8. Large clusters ... 84

5.8.1. Reducing chattiness ... 84

5.9. STOMP support .. 85

5.10. Bridging between remote clusters .. 88

5.10.1. Views ... 89

5.10.2. Configuration .. 90

5.11. Relaying between multiple sites (RELAY2) ... 90

5.11.1. Relaying of multicasts ... 92

5.11.2. Relaying of unicasts ... 92

5.11.3. Invoking RPCs across sites .. 93

5.11.4. Configuration .. 93

5.12. Daisychaining .. 95

5.12.1. Traditional N-1 approach ... 95

5.12.2. Daisychaining approach .. 96

5.12.3. Switch usage ... 96

5.12.4. Performance .. 96

5.12.5. Configuration .. 96

5.13. Tagging messages with flags ... 97

5.14. Performance tests ... 99

5.14.1. MPerf ... 99

5.15. Ergonomics ... 101

5.16. Supervising a running stack ... 102

5.17. Probe ... 104

5.18. Determining the coordinator and controlling view generation 109

5.19. ForkChannels: light-weight channels to piggy-back messages over an existing

channel ... 111

5.19.1. Configuration .. 114

5.19.2. Creation of fork channels .. 115

6. Writing protocols ... 117

6.1. Writing user defined headers ... 117

7. List of Protocols .. 121

7.1. Properties availabe in every protocol .. 121

7.2. Transport .. 121

7.2.1. UDP .. 127

7.2.2. TCP ... 128

7.2.3. TUNNEL .. 129

7.3. Initial membership discovery .. 129

7.3.1. Discovery ... 130

7.3.2. PING ... 131

Reliable group communication ...

vi

7.3.3. TCPPING ... 132

7.3.4. TCPGOSSIP .. 132

7.3.5. MPING .. 133

7.3.6. FILE_PING .. 133

7.3.7. JDBC_PING ... 135

7.3.8. BPING ... 136

7.3.9. RACKSPACE_PING ... 136

7.3.10. S3_PING .. 137

7.3.11. GOOGLE_PING ... 138

7.3.12. SWIFT_PING ... 139

7.3.13. AWS_PING .. 139

7.3.14. PDC - Persistent Discovery Cache .. 139

7.4. Merging after a network partition .. 140

7.4.1. MERGE2 ... 140

7.4.2. MERGE3 ... 141

7.5. Failure Detection ... 142

7.5.1. FD ... 142

7.5.2. FD_ALL ... 143

7.5.3. FD_ALL2 ... 144

7.5.4. FD_SOCK .. 144

7.5.5. FD_PING ... 146

7.5.6. FD_HOST .. 146

7.5.7. VERIFY_SUSPECT .. 147

7.6. Reliable message transmission .. 148

7.6.1. pbcast.NAKACK ... 148

7.6.2. NAKACK2 .. 150

7.6.3. UNICAST ... 152

7.6.4. UNICAST2 ... 153

7.6.5. UNICAST3 ... 155

7.6.6. RSVP .. 156

7.7. Message stability .. 157

7.7.1. STABLE ... 157

7.8. Group Membership ... 158

7.8.1. pbcast.GMS ... 158

7.9. Flow control .. 160

7.9.1. FC ... 161

7.9.2. MFC and UFC ... 161

7.10. Fragmentation ... 162

7.10.1. FRAG and FRAG2 ... 162

7.11. Ordering ... 162

7.11.1. SEQUENCER ... 162

7.11.2. Total Order Anycast (TOA) .. 163

7.12. State Transfer ... 163

7.12.1. pbcast.STATE_TRANSFER ... 163

vii

7.12.2. StreamingStateTransfer .. 164

7.12.3. pbcast.STATE .. 164

7.12.4. STATE_SOCK .. 165

7.12.5. BARRIER ... 166

7.13. pbcast.FLUSH ... 166

7.14. Misc ... 167

7.14.1. Statistics .. 167

7.14.2. Security .. 167

7.14.3. COMPRESS ... 172

7.14.4. SCOPE .. 172

7.14.5. RELAY ... 173

7.14.6. RELAY2 ... 174

7.14.7. STOMP .. 175

7.14.8. DAISYCHAIN ... 175

7.14.9. RATE_LIMITER .. 176

7.14.10. Locking protocols .. 176

7.14.11. CENTRAL_EXECUTOR .. 177

7.14.12. COUNTER ... 178

7.14.13. SUPERVISOR .. 178

7.14.14. FORK .. 178

viii

ix

Preface

This is the JGroups manual. It provides information about:

1. Installation and configuration

2. Using JGroups (the API)

3. Configuration of the JGroups protocols

The focus is on how to use JGroups, not on how JGroups is implemented.

Here are a couple of points I want to abide by throughout this book:

1. I like brevity. I will strive to describe concepts as clearly as possible (for a non-native English

speaker) and will refrain from saying more than I have to to make a point.

2. I like simplicity. Keep It Simple and Stupid. This is one of the biggest goals I have both in writing

this manual and in writing JGroups. It is easy to explain simple concepts in complex terms, but

it is hard to explain a complex system in simple terms. I'll try to do the latter.

So, how did it all start?

I spent 1998-1999 at the Computer Science Department at Cornell University as a post-doc, in

Ken Birman's group. Ken is credited with inventing the group communication paradigm, especially

the Virtual Synchrony model. At the time they were working on their third generation group

communication prototype, called Ensemble. Ensemble followed Horus (written in C by Robbert

VanRenesse), which followed ISIS (written by Ken Birman, also in C). Ensemble was written in

OCaml, developed at INRIA, and is a functional language and related to ML. I never liked the

OCaml language, which in my opinion has a hideous syntax. Therefore I never got warm with

Ensemble either.

However, Ensemble had a Java interface (implemented by a student in a semester project) which

allowed me to program in Java and use Ensemble underneath. The Java part would require that

an Ensemble process was running somewhere on the same machine, and would connect to it

via a bidirectional pipe. The student had developed a simple protocol for talking to the Ensemble

engine, and extended the engine as well to talk back to Java.

However, I still needed to compile and install the Ensemble runtime for each different platform,

which is exactly why Java was developed in the first place: portability.

Therefore I started writing a simple framework (now JChannel), which would allow me to treat

Ensemble as just another group communication transport, which could be replaced at any time by

a pure Java solution. And soon I found myself working on a pure Java implementation of the group

communication transport (now: ProtocolStack). I figured that a pure Java implementation would

have a much bigger impact that something written in Ensemble. In the end I didn't spend much

time writing scientific papers that nobody would read anyway (I guess I'm not a good scientist, at

Preface

x

least not a theoretical one), but rather code for JGroups, which could have a much bigger impact.

For me, knowing that real-life projects/products are using JGroups is much more satisfactory than

having a paper accepted at a conference/journal.

That's why, after my time was up, I left Cornell and academia altogether, and started a job in the

telecom industry in Silicon Valley.

At around that time (May 2000), SourceForge had just opened its site, and I decided to use it for

hosting JGroups. This was a major boost for JGroups because now other developers could work

on the code. From then on, the page hit and download numbers for JGroups have steadily risen.

In the fall of 2002, Sacha Labourey contacted me, letting me know that JGroups was being used

by JBoss for their clustering implementation. I joined JBoss in 2003 and have been working on

JGroups and JBossCache. My goal is to make JGroups the most widely used clustering software

in Java ...

I want to thank all contributors to JGroups, present and past, for their work. Without you, this

project would never have taken off the ground.

I also want to thank Ken Birman and Robbert VanRenesse for many fruitful discussions of all

aspects of group communication in particular and distributed systems in general.

I want to dedicate this manual to Jeannette and Michelle.

Bela Ban, San Jose, Aug 2002, Kreuzlingen Switzerland 2011

Chapter 1.

1

Overview
Group communication uses the terms group and member. Members are part of a group. In the

more common terminology, a member is a node and a group is a cluster. We use these terms

interchangeably.

A node is a process, residing on some host. A cluster can have one or more nodes belonging to

it. There can be multiple nodes on the same host, and all may or may not be part of the same

cluster. Nodes can of course also run on different hosts.

JGroups is toolkit for reliable group communication. Processes can join a group, send messages

to all members or single members and receive messages from members in the group. The system

keeps track of the members in every group, and notifies group members when a new member

joins, or an existing member leaves or crashes. A group is identified by its name. Groups do not

have to be created explicitly; when a process joins a non-existing group, that group will be created

automatically. Processes of a group can be located on the same host, within the same LAN, or

across a WAN. A member can be part of multiple groups.

The architecture of JGroups is shown in Figure 1.1, “The architecture of JGroups”.

Figure 1.1. The architecture of JGroups

It consists of 3 parts: (1) the Channel used by application programmers to build reliable group

communication applications, (2) the building blocks, which are layered on top of the channel and

Chapter 1. Overview

2

provide a higher abstraction level and (3) the protocol stack, which implements the properties

specified for a given channel.

This document describes how to install and use JGroups, ie. the Channel API and the building

blocks. The targeted audience is application programmers who want to use JGroups to build

reliable distributed programs that need group communication.

A channel is connected to a protocol stack. Whenever the application sends a message, the

channel passes it on to the protocol stack, which passes it to the topmost protocol. The protocol

processes the message and the passes it down to the protocol below it. Thus the message is

handed from protocol to protocol until the bottom (transport) protocol puts it on the network. The

same happens in the reverse direction: the transport protocol listens for messages on the network.

When a message is received it will be handed up the protocol stack until it reaches the channel.

The channel then invokes the receive() callback in the application to deliver the message.

When an application connects to the channel, the protocol stack will be started, and when it

disconnects the stack will be stopped. When the channel is closed, the stack will be destroyed,

releasing its resources.

The following three sections give an overview of channels, building blocks and the protocol stack.

1.1. Channel

To join a group and send messages, a process has to create a channel and connect to it using

the group name (all channels with the same name form a group). The channel is the handle to

the group. While connected, a member may send and receive messages to/from all other group

members. The client leaves a group by disconnecting from the channel. A channel can be reused:

clients can connect to it again after having disconnected. However, a channel allows only 1 client

to be connected at a time. If multiple groups are to be joined, multiple channels can be created

and connected to. A client signals that it no longer wants to use a channel by closing it. After this

operation, the channel cannot be used any longer.

Each channel has a unique address. Channels always know who the other members are in the

same group: a list of member addresses can be retrieved from any channel. This list is called a

view. A process can select an address from this list and send a unicast message to it (also to

itself), or it may send a multicast message to all members of the current view (also including itself).

Whenever a process joins or leaves a group, or when a crashed process has been detected, a

new view is sent to all remaining group members. When a member process is suspected of having

crashed, a suspicion message is received by all non-faulty members. Thus, channels receive

regular messages, and view and suspicion notifications.

The properties of a channel are typically defined in an XML file, but JGroups also allows for

configuration through simple strings, URIs, DOM trees or even programmatically.

The Channel API and its related classes is described in Chapter 3, API.

Building Blocks

3

1.2. Building Blocks

Channels are simple and primitive. They offer the bare functionality of group communication, and

have been designed after the simple model of sockets, which are widely used and well understood.

The reason is that an application can make use of just this small subset of JGroups, without having

to include a whole set of sophisticated classes, that it may not even need. Also, a somewhat

minimalistic interface is simple to understand: a client needs to know about 5 methods to be able

to create and use a channel.

Channels provide asynchronous message sending/reception, somewhat similar to UDP. A

message sent is essentially put on the network and the send() method will return immediately.

Conceptual requests, or responses to previous requests, are received in undefined order, and the

application has to take care of matching responses with requests.

JGroups offers building blocks that provide more sophisticated APIs on top of a Channel. Building

blocks either create and use channels internally, or require an existing channel to be specified

when creating a building block. Applications communicate directly with the building block, rather

than the channel. Building blocks are intended to save the application programmer from having to

write tedious and recurring code, e.g. request-response correlation, and thus offer a higher level

of abstraction to group communication.

Building blocks are described in Chapter 4, Building Blocks.

1.3. The Protocol Stack

The protocol stack containins a number of protocol layers in a bidirectional list. All messages sent

and received over the channel have to pass through all protocols. Every layer may modify, reorder,

pass or drop a message, or add a header to a message. A fragmentation layer might break up

a message into several smaller messages, adding a header with an id to each fragment, and re-

assemble the fragments on the receiver's side.

The composition of the protocol stack, i.e. its protocols, is determined by the creator of the

channel: an XML file defines the protocols to be used (and the parameters for each protocol). The

configuration is then used to create the stack.

Knowledge about the protocol stack is not necessary when only using channels in an application.

However, when an application wishes to ignore the default properties for a protocol stack, and

configure their own stack, then knowledge about what the individual layers are supposed to do

is needed.

4

Chapter 2.

5

Installation and Configuration
The installation refers to version 3.x of JGroups. Refer to the installation instructions

(INSTALL.html) that are shipped with the JGroups version you downloaded for details.

The JGroups JAR can be downloaded from SourceForge [http://sourceforge.net/projects/

javagroups/files/JGroups/]. It is named jgroups-x.y.z, where x=major, y=minor and z=patch

version, for example jgroups-3.0.0.Final.jar. The JAR is all that's needed to get started using

JGroups; it contains all core, demo and (selected) test classes, the sample XML configuration

files and the schema.

The source code is hosted on GitHub [https://github.com/belaban/jgroups]. To build JGroups, ANT

is currently used. In Section 2.3, “Building JGroups (source distribution only)” we'll show how to

build JGroups from source.

2.1. Requirements

• JGroups 3.x requires JDK 6 or higher.

• There is no JNI code present so JGroups should run on all platforms.

• Logging: by default, JGroups tries to use log4j2. If the classes are not found on the classpath, it

resorts to log4j, and if still not found, it falls back to the java.util.logging logger. See Section 2.4,

“Logging” for details on log configuration.

2.2. Structure of the source version

The source version consists of the following directories and files:

• src: the sources

• tests: unit and stress tests

• lib: JARs needed to either run the unit tests, or build the manual etc. No JARs from here are

required at runtime ! Note that these JARs are downloaded automatically via ivy.

• conf: configuration files needed by JGroups, plus default protocol stack definitions

• doc: documentation

2.3. Building JGroups (source distribution only)

1. Download the sources from GitHub [https://github.com/belaban/jgroups], either via 'git clone',

or the download link [https://github.com/belaban/JGroups/archives/master] into a directory

"JGroups", e.g. /home/bela/JGroups.

http://sourceforge.net/projects/javagroups/files/JGroups/
http://sourceforge.net/projects/javagroups/files/JGroups/
http://sourceforge.net/projects/javagroups/files/JGroups/
https://github.com/belaban/jgroups
https://github.com/belaban/jgroups
https://github.com/belaban/jgroups
https://github.com/belaban/jgroups
https://github.com/belaban/JGroups/archives/master
https://github.com/belaban/JGroups/archives/master

Chapter 2. Installation and C...

6

2. Download ant (preferably 1.8.x or higher)

3. Change to the JGroups directory

4. Run ant: $> ant

5. This will compile all Java files (into the classes directory). Note that if the lib directory doesn't

exist, ant will (1) download ivy into lib and then use ivy to download the dependent libraries

defined in ivy.xml.

6. To generate the JGroups JAR: $> ant jar

7. This will generate the following JAR files in the dist directory:

• jgroups-3.x.y.jar - the JGroups JAR

• jgroups-sources.jar - the source code for the core classes and demos.

8. Now add the following directories to the classpath:

a. JGroups/classes

b. JGroups/conf

c. All needed JAR files in JGroups/lib. Note that most JARs in lib are only required for

running unit tests and generating test reports.

9. To generate JavaDocs simple run $> ant javadoc and the Javadoc documentation will be

generated in the dist/javadoc directory

10.Note that you need to have ant installed in order to build JGroups from source.

11.For more details on Ant see http://jakarta.apache.org/ant/.

2.4. Logging

JGroups has no runtime dependencies; all that's needed to use it is to have jgroups.jar on the

classpath. For logging, this means the JVM's logging (java.util.logging) is used.

However, JGroups can use any other logging framework. By default, log4j and log4j2 are

supported if the corresponding JARs are found on the classpath.

2.4.1. log4j2

To use (log4j2 [http://logging.apache.org/log4j/2.x/manual/index.html]), the API and CORE JARs

have to be found on the classpath. There's an XML configuration for log4j2 in the conf dir, which

can be used e.g. via -Dlog4j.configurationFile=$JGROUPS/conf/log4j2.xml.

log4j2 is currently the preferred logging library used by JGroups, and will be used even if the log4j

JAR is also present on the classpath.

http://jakarta.apache.org/ant/
http://logging.apache.org/log4j/2.x/manual/index.html
http://logging.apache.org/log4j/2.x/manual/index.html

log4j

7

2.4.2. log4j

To use (log4j [http://logging.apache.org/log4j/1.2]), the log4j JAR has to be found on the classpath.

Note though that if the log4j2 API and CORE JARs are found, then log4j2 will be used, so those

JARs will have to be removed if log4j is to be used. There's an XML configuration for log4j in the

conf dir, which can be used e.g. via -Dlog4j.configuration=file:$JGROUPS/conf/log4j.properties.

2.4.3. JDK logging (JUL)

To force use of JDK logging, even if the log4j(2) JARs are present, -Djgroups.use.jdk_logger=true

can be used.

2.4.4. Support for custom logging frameworks

JGroups allows custom loggers to be used instead of the ones supported by default. To do this,

interface CustomLogFactory has to be implemented:

public interface CustomLogFactory {

 Log getLog(Class clazz);

 Log getLog(String category);

}

The implementation needs to return an implementation of org.jgroups.logging.Log.

To force using the custom log implementation, the fully qualified classname of the custom log

factory has to be provided via -Djgroups.logging.log_factory_class=com.foo.MyCustomLogger.

2.5. Testing your Setup

To see whether your system can find the JGroups classes, execute the following command:

java org.jgroups.Version

or

java -jar jgroups-all.jar

You should see the following output (more or less) if the class is found:

$ java org.jgroups.Version

 Version: 3.0.0.Beta1

http://logging.apache.org/log4j/1.2
http://logging.apache.org/log4j/1.2

Chapter 2. Installation and C...

8

2.6. Running a Demo Program

To test whether JGroups works okay on your machine, run the following command twice:

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw

2 whiteboard windows should appear as shown in Figure 2.1, “Screenshot of 2 Draw instances”.

Figure 2.1. Screenshot of 2 Draw instances

If you started them simultaneously, they could initially show a membership of 1 in their title bars.

After some time, both windows should show 2. This means that the two instances found each

other and formed a cluster.

When drawing in one window, the second instance should also be updated. As the default group

transport uses IP multicast, make sure that - if you want start the 2 instances in different subnets

- IP multicast is enabled. If this is not the case, the 2 instances won't 'find' each other and the

example won't work.

You can change the properties of the demo to for example use a different transport if multicast

doesn't work (it should always work on the same machine). Please consult the documentation to

see how to do this.

State transfer (see the section in the API later) can also be tested by passing the -state flag to

Draw.

If the 2 instances find each other and form a cluster, you can skip ahead to the next chapter

("Writing a simple application").

2.7. Using IP Multicasting without a network connection

Sometimes there isn't a network connection (e.g. DSL modem is down), or we want to multicast

only on the local machine. For this the loopback interface (typically lo) can be configured, e.g.

It doesn't work !

9

route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

This means that all traffic directed to the 224.0.0.0 network will be sent to the loopback interface,

which means it doesn't need any network to be running. Note that the 224.0.0.0 network is a

placeholder for all multicast addresses in most UNIX implementations: it will catch all multicast

traffic. This is an undocumented feature of /sbin/route and may not work across all UNIX flavors.

The above instructions may also work for Windows systems, but this hasn't been tested. Note that

not all systems allow multicast traffic to use the loopback interface.

Typical home networks have a gateway/firewall with 2 NICs: the first (eth0) is connected to the

outside world (Internet Service Provider), the second (eth1) to the internal network, with the

gateway firewalling/masquerading traffic between the internal and external networks. If no route

for multicast traffic is added, the default will be to use the fdefault gateway, which will typically

direct the multicast traffic towards the ISP. To prevent this (e.g. ISP drops multicast traffic, or

latency is too high), we recommend to add a route for multicast traffic which goes to the internal

network (e.g. eth1).

2.8. It doesn't work !

Make sure your machine is set up correctly for IP multicast. There are 2 test programs that can

be used to detect this: McastReceiverTest and McastSenderTest. Start McastReceiverTest, e.g.

java org.jgroups.tests.McastReceiverTest

Then start McastSenderTest:

java org.jgroups.tests.McastSenderTest

If you want to bind to a specific network interface card (NIC), use -bind_addr 192.168.0.2, where

192.168.0.2 is the IP address of the NIC to which you want to bind. Use this parameter in both

sender and receiver.

You should be able to type in the McastSenderTest window and see the output in the

McastReceiverTest. If not, try to use -ttl 32 in the sender. If this still fails, consult a system

administrator to help you setup IP multicast correctly. If you are the system administrator, look

for another job :-)

Other means of getting help: there is a public forum on JIRA [http://jira.jboss.com/jira/browse/

JGRP] for questions. Also consider subscribing to the javagroups-users mailing list to discuss

such and other problems.

2.9. Problems with IPv6

Another source of problems might be the use of IPv6, and/or misconfiguration of /etc/hosts. If

you communicate between an IPv4 and an IPv6 host, and they are not able to find each other, try

the -Djava.net.preferIP4Stack=true property, e.g.

http://jira.jboss.com/jira/browse/JGRP
http://jira.jboss.com/jira/browse/JGRP
http://jira.jboss.com/jira/browse/JGRP

Chapter 2. Installation and C...

10

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props /home/

bela/udp.xml

The JDK uses IPv6 by default, although is has a dual stack, that is, it also supports IPv4. Here's

[http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/] more details on the subject.

2.10. Wiki

There is a wiki which lists FAQs and their solutions at http://www.jboss.org/wiki/Wiki.jsp?

page=JGroups. It is frequently updated and a useful companion to this user's guide.

2.11. I have discovered a bug !

If you think that you discovered a bug, submit a bug report on JIRA [http://jira.jboss.com/jira/

browse/JGRP] or send email to the jgroups-users mailing list if you're unsure about it. Please

include the following information:

• Version of JGroups (java org.jgroups.Version)

• Platform (e.g. Solaris 8)

• Version of JDK (e.g. JDK 1.4.2_07)

• Stack trace. Use kill -3 PID on UNIX systems or CTRL-BREAK on windows machines

• Small program that reproduces the bug

2.12. Supported classes

JGroups project has been around since 1998. Over this time, some of the JGroups classes have

been used in experimental phases and have never been matured enough to be used in today's

production releases. However, they were not removed since some people used them in their

products.

The following tables list unsupported and experimental classes. These classes are not actively

maintained, and we will not work to resolve potential issues you might find. Their final faith is not

yet determined; they might even be removed altogether in the next major release. Weight your

risks if you decide to use them anyway.

2.12.1. Experimental

Table 2.1. Experimental

Package Class

org.jgroups.util HashedTimingWheel

org.jgroups.blocks GridInputStream

org.jgroups.blocks GridOutputStream

http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/
http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/
http://www.jboss.org/wiki/Wiki.jsp?page=JGroups
http://www.jboss.org/wiki/Wiki.jsp?page=JGroups
http://jira.jboss.com/jira/browse/JGRP
http://jira.jboss.com/jira/browse/JGRP
http://jira.jboss.com/jira/browse/JGRP

Unsupported

11

Package Class

org.jgroups.blocks PartitionedHashMap

org.jgroups.blocks ReplCache

org.jgroups.blocks GridFilesystem

org.jgroups.blocks Cache

org.jgroups.blocks GridFile

org.jgroups.auth Krb5Token

org.jgroups.client StompConnection

org.jgroups.protocols TCP_NIO

org.jgroups.protocols FD_ALL2

org.jgroups.protocols SHUFFLE

org.jgroups.protocols DAISYCHAIN

org.jgroups.protocols RATE_LIMITER

org.jgroups.protocols TUNNEL

org.jgroups.protocols GOOGLE_PING

org.jgroups.protocols SEQUENCER2

org.jgroups.protocols PRIO

org.jgroups.protocols SWIFT_PING

2.12.2. Unsupported

Table 2.2. Unsupported

Package Class

org.jgroups.util HashedTimingWheel

org.jgroups.blocks PartitionedHashMap

org.jgroups.blocks ReplCache

org.jgroups.blocks ReplicatedHashMap

org.jgroups.blocks ReplicatedTree

org.jgroups.blocks Cache

org.jgroups.protocols TCP_NIO

org.jgroups.protocols DISCARD

org.jgroups.protocols DISCARD_PAYLOAD

org.jgroups.protocols HDRS

org.jgroups.protocols FD_PING

org.jgroups.protocols EXAMPLE

12

Chapter 3.

13

API
This chapter explains the classes available in JGroups that will be used by applications to build

reliable group communication applications. The focus is on creating and using channels.

Information in this document may not be up-to-date, but the nature of the classes in JGroups

described here is the same. For the most up-to-date information refer to the Javadoc-generated

documentation in the doc/javadoc directory.

All of the classes discussed here are in the org.jgroups package unless otherwise mentioned.

3.1. Utility classes

The org.jgroups.util.Util class contains useful common functionality which cannot be

assigned to any other package.

3.1.1. objectToByteBuffer(), objectFromByteBuffer()

The first method takes an object as argument and serializes it into a byte buffer (the object has

to be serializable or externalizable). The byte array is then returned. This method is often used to

serialize objects into the byte buffer of a message. The second method returns a reconstructed

object from a buffer. Both methods throw an exception if the object cannot be serialized or

unserialized.

3.1.2. objectToStream(), objectFromStream()

The first method takes an object and writes it to an output stream. The second method takes an

input stream and reads an object from it. Both methods throw an exception if the object cannot

be serialized or unserialized.

3.2. Interfaces

These interfaces are used with some of the APIs presented below, therefore they are listed first.

3.2.1. MessageListener

The MessageListener interface below provides callbacks for message reception and for providing

and setting the state:

public interface MessageListener {

 void receive(Message msg);

 void getState(OutputStream output) throws Exception;

 void setState(InputStream input) throws Exception;

Chapter 3. API

14

}

Method receive() is be called whenever a message is received. The getState() and

setState() methods are used to fetch and set the group state (e.g. when joining). Refer to

Section 3.8.11, “Getting the group's state” for a discussion of state transfer.

3.2.2. MembershipListener

The MembershipListener interface is similar to the MessageListener interface above: every

time a new view, a suspicion message, or a block event is received, the corresponding method

of the class implementing MembershipListener will be called.

public interface MembershipListener {

 public void viewAccepted(View new_view);

 public void suspect(Object suspected_mbr);

 public void block();

 public void unblock();

}

Oftentimes the only callback that needs to be implemented will be viewAccepted() which notifies

the receiver that a new member has joined the group or that an existing member has left or

crashed. The suspect() callback is invoked by JGroups whenever a member if suspected of

having crashed, but not yet excluded 1.

The block() method is called to notify the member that it will soon be blocked sending messages.

This is done by the FLUSH protocol, for example to ensure that nobody is sending messages

while a state transfer or view installation is in progress. When block() returns, any thread sending

messages will be blocked, until FLUSH unblocks the thread again, e.g. after the state has been

transferred successfully.

Therefore, block() can be used to send pending messages or complete some other work. Note

that block() should be brief, or else the entire FLUSH protocol is blocked.

The unblock() method is called to notify the member that the FLUSH protocol has completed

and the member can resume sending messages. If the member did not stop sending messages

on block(), FLUSH simply blocked them and will resume, so no action is required from a member.

Implementation of the unblock() callback is optional.

1It could be that the member is suspected falsely, in which case the next view would still contain the suspected member

(there is no unsuspect() method

Receiver

15

Use of MessageListener and MembershipListener

Note that it is oftentimes simpler to extend ReceiverAdapter (see below) and

implement the needed callbacks than to implement all methods of both of these

interfaces, as most callbacks are not needed.

3.2.3. Receiver

public interface Receiver extends MessageListener, MembershipListener;

A Receiver can be used to receive messages and view changes; receive() will be invoked as

soon as a message has been received, and viewAccepted() will be called whenever a new view

is installed.

3.2.4. ReceiverAdapter

This class implements Receiver with no-op implementations. When implementing a callback, we

can simply extend ReceiverAdapter and overwrite receive() in order to not having to implement

all callbacks of the interface.

ReceiverAdapter looks as follows:

public class ReceiverAdapter implements Receiver {

 public void receive(Message msg) {}

 public void getState(OutputStream output) throws Exception {}

 public void setState(InputStream input) throws Exception {}

 public void viewAccepted(View view) {}

 public void suspect(Address mbr) {}

 public void block() {}

 public void unblock() {}

}

A ReceiverAdapter is the recommended way to implement callbacks.

Sending messages in callbacks

Note that anything that could block should not be done in a callback. This includes

sending of messages; if we have FLUSH on the stack, and send a message

in a viewAccepted() callback, then the following happens: the FLUSH protocol

blocks all (multicast) messages before installing a view, then installs the view, then

Chapter 3. API

16

unblocks. However, because installation of the view triggers the viewAccepted()

callback, sending of messages inside of viewAccepted() will block. This in turn

blocks the viewAccepted() thread, so the flush will never return !

If we need to send a message in a callback, the sending should be done on a

separate thread, or a timer task should be submitted to the timer.

3.2.5. ChannelListener

public interface ChannelListener {

 void channelConnected(Channel channel);

 void channelDisconnected(Channel channel);

 void channelClosed(Channel channel);

}

A class implementing ChannelListener can use the Channel.addChannelListener() method

to register with a channel to obtain information about state changes in a channel. Whenever a

channel is closed, disconnected or opened, the corresponding callback will be invoked.

3.3. Address

Each member of a group has an address, which uniquely identifies the member. The interface for

such an address is Address, which requires concrete implementations to provide methods such

as comparison and sorting of addresses. JGroups addresses have to implement the following

interface:

public interface Address extends Externalizable, Comparable, Cloneable {

 int size();

}

For marshalling purposes, size() needs to return the number of bytes an instance of an address

implementation takes up in serialized form.

Please never use implementations of Address directly; Address should always be used as an

opaque identifier of a cluster node !

Actual implementations of addresses are often generated by the bottommost protocol layer (e.g.

UDP or TCP). This allows for all possible sorts of addresses to be used with JGroups.

Message

17

Since an address uniquely identifies a channel, and therefore a group member, it can be used to

send messages to that group member, e.g. in Messages (see next section).

The default implementation of Address is org.jgroups.util.UUID. It uniquely identifies a

node, and when disconnecting and reconnecting to a cluster, a node is given a new UUID on

reconnection.

UUIDs are never shown directly, but are usually shown as a logical name (see Section 3.8.2,

“Giving the channel a logical name”). This is a name given to a node either via the user or via

JGroups, and its sole purpose is to make logging output a bit more readable.

UUIDs maps to IpAddresses, which are IP addresses and ports. These are eventually used by

the transport protocol to send a message.

3.4. Message

Data is sent between members in the form of messages (org.jgroups.Message). A message

can be sent by a member to a single member, or to all members of the group of which the channel

is an endpoint. The structure of a message is shown in Figure 3.1, “Structure of a message”.

Figure 3.1. Structure of a message

A message has 5 fields:

Destination address

The address of the receiver. If null, the message will be sent to all current group members.

Message.getDest() returns the destination address of a message.

Source address

The address of the sender. Can be left null, and will be filled in by the transport protocol

(e.g. UDP) before the message is put on the network. Message.getSrc() returns the source

address, ie. the address of the sender of a message.

Flags

This is one byte used for flags. The currently recognized flags are OOB, DONT_BUNDLE,

NO_FC, NO_RELIABILITY, NO_TOTAL_ORDER, NO_RELAY and RSVP. For OOB, see the

discussion on the concurrent stack (Section 5.4, “The concurrent stack”). For the use of flags

see Section 5.13, “Tagging messages with flags”.

Payload

The actual data (as a byte buffer). The Message class contains convenience methods to set

a serializable object and to retrieve it again, using serialization to convert the object to/from

Chapter 3. API

18

a byte buffer. A message also has an offset and a length, if the buffer is only a subrange of

a larger buffer.

Headers

A list of headers that can be attached to a message. Anything that should not be in the

payload can be attached to a message as a header. Methods putHeader() , getHeader()

and removeHeader() of Message can be used to manipulate headers.

Note that headers are only used by protocol implementers; headers should not be added or

removed by application code !

A message is similar to an IP packet and consists of the payload (a byte buffer) and the addresses

of the sender and receiver (as Addresses). Any message put on the network can be routed to its

destination (receiver address), and replies can be returned to the sender's address.

A message usually does not need to fill in the sender's address when sending a message; this is

done automatically by the protocol stack before a message is put on the network. However, there

may be cases, when the sender of a message wants to give an address different from its own, so

that for example, a response should be returned to some other member.

The destination address (receiver) can be an Address, denoting the address of a member,

determined e.g. from a message received previously, or it can be null, which means that the

message will be sent to all members of the group. A typical multicast message, sending string

"Hello" to all members would look like this:

Message msg=new Message(null, "Hello");

channel.send(msg);

3.5. Header

A header is a custom bit of information that can be added to each message. JGroups uses headers

extensively, for example to add sequence numbers to each message (NAKACK and UNICAST),

so that those messages can be delivered in the order in which they were sent.

3.6. Event

Events are means by which JGroups protcols can talk to each other. Contrary to Messages, which

travel over the network between group members, events only travel up and down the stack.

Headers and events

Headers and events are only used by protocol implementers; they are not needed

by application code !

View

19

3.7. View

A view (org.jgroups.View) is a list of the current members of a group. It consists of a ViewId,

which uniquely identifies the view (see below), and a list of members. Views are installed in

a channel automatically by the underlying protocol stack whenever a new member joins or an

existing one leaves (or crashes). All members of a group see the same sequence of views.

Note that the first member of a view is the coordinator (the one who emits new views). Thus,

whenever the membership changes, every member can determine the coordinator easily and

without having to contact other members, by picking the first member of a view.

The code below shows how to send a (unicast) message to the first member of a view (error

checking code omitted):

View view=channel.getView();

Address first=view.getMembers().get(0);

Message msg=new Message(first, "Hello world");

channel.send(msg);

Whenever an application is notified that a new view has been installed (e.g. by

Receiver.viewAccepted(), the view is already set in the channel. For example, calling

Channel.getView() in a viewAccepted() callback would return the same view (or possibly the

next one in case there has already been a new view !).

3.7.1. ViewId

The ViewId is used to uniquely number views. It consists of the address of the view creator

and a sequence number. ViewIds can be compared for equality and put in a hashmaps as they

implement equals() and hashCode(). 2

3.7.2. MergeView

Whenever a group splits into subgroups, e.g. due to a network partition, and later the subgroups

merge back together, a MergeView instead of a View will be received by the application. The

MergeView is a subclass of View and contains as additional instance variable the list of views

that were merged. As an example if the group denoted by view V1:(p,q,r,s,t) split into

subgroups V2:(p,q,r) and V2:(s,t), the merged view might be V3:(p,q,r,s,t). In this case

the MergeView would contains a list of 2 views: V2:(p,q,r) and V2:(s,t).

2Note that the latter 2 methods only take the ID into account.

Chapter 3. API

20

3.8. JChannel

In order to join a group and send messages, a process has to create a channel. A channel is

like a socket. When a client connects to a channel, it gives the the name of the group it would

like to join. Thus, a channel is (in its connected state) always associated with a particular group.

The protocol stack takes care that channels with the same group name find each other: whenever

a client connects to a channel given group name G, then it tries to find existing channels with

the same name, and joins them, resulting in a new view being installed (which contains the new

member). If no members exist, a new group will be created.

A state transition diagram for the major states a channel can assume are shown in Figure 3.2,

“Channel states”.

Figure 3.2. Channel states

When a channel is first created, it is in the unconnected state. An attempt to perform certain

operations which are only valid in the connected state (e.g. send/receive messages) will result in

an exception. After a successful connection by a client, it moves to the connected state. Now the

channel will receive messages from other members and may send messages to other members

or to the group, and it will get notified when new members join or leave. Getting the local address

of a channel is guaranteed to be a valid operation in this state (see below). When the channel

is disconnected, it moves back to the unconnected state. Both a connected and unconnected

channel may be closed, which makes the channel unusable for further operations. Any attempt

to do so will result in an exception. When a channel is closed directly from a connected state, it

will first be disconnected, and then closed.

The methods available for creating and manipulating channels are discussed now.

3.8.1. Creating a channel

A channel is created using one of its public constructors (e.g. new JChannel()).

The most frequently used constructor of JChannel looks as follows:

Creating a channel

21

public JChannel(String props) throws Exception;

The props argument points to an XML file containing the configuration of the protocol stack to be

used. This can be a String, but there are also other constructors which take for example a DOM

element or a URL (see the javadoc for details).

The code sample below shows how to create a channel based on an XML configuration file:

JChannel ch=new JChannel("/home/bela/udp.xml");

If the props argument is null, the default properties will be used. An exception will be thrown if the

channel cannot be created. Possible causes include protocols that were specified in the property

argument, but were not found, or wrong parameters to protocols.

For example, the Draw demo can be launched as follows:

java org.javagroups.demos.Draw -props file:/home/bela/udp.xml

or

java org.javagroups.demos.Draw -props http://www.jgroups.org/udp.xml

In the latter case, an application downloads its protocol stack specification from a server, which

allows for central administration of application properties.

A sample XML configuration looks like this (edited from udp.xml):

<config xmlns="urn:org:jgroups"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/

jgroups.xsd">

 <UDP

 mcast_port="${jgroups.udp.mcast_port:45588}"

 tos="8"

 ucast_recv_buf_size="20M"

 ucast_send_buf_size="640K"

 mcast_recv_buf_size="25M"

 mcast_send_buf_size="640K"

 loopback="true"

 discard_incompatible_packets="true"

 max_bundle_size="64K"

 max_bundle_timeout="30"

 ip_ttl="${jgroups.udp.ip_ttl:2}"

 enable_bundling="true"

Chapter 3. API

22

 enable_diagnostics="true"

 thread_naming_pattern="cl"

 timer_type="new"

 timer.min_threads="4"

 timer.max_threads="10"

 timer.keep_alive_time="3000"

 timer.queue_max_size="500"

 thread_pool.enabled="true"

 thread_pool.min_threads="2"

 thread_pool.max_threads="8"

 thread_pool.keep_alive_time="5000"

 thread_pool.queue_enabled="true"

 thread_pool.queue_max_size="10000"

 thread_pool.rejection_policy="discard"

 oob_thread_pool.enabled="true"

 oob_thread_pool.min_threads="1"

 oob_thread_pool.max_threads="8"

 oob_thread_pool.keep_alive_time="5000"

 oob_thread_pool.queue_enabled="false"

 oob_thread_pool.queue_max_size="100"

 oob_thread_pool.rejection_policy="Run"/>

 <PING timeout="2000"

 num_initial_members="3"/>

 <MERGE3 max_interval="30000"

 min_interval="10000"/>

 <FD_SOCK/>

 <FD_ALL/>

 <VERIFY_SUSPECT timeout="1500" />

 <BARRIER />

 <pbcast.NAKACK use_stats_for_retransmission="false"

 exponential_backoff="0"

 use_mcast_xmit="true"

 retransmit_timeout="300,600,1200"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200"/>

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="4M"/>

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

 <UFC max_credits="2M"

 min_threshold="0.4"/>

 <MFC max_credits="2M"

 min_threshold="0.4"/>

 <FRAG2 frag_size="60K" />

 <pbcast.STATE_TRANSFER />

Creating a channel

23

</config>

A stack is wrapped by <config> and </config> elements and lists all protocols from bottom (UDP)

to top (STATE_TRANSFER). Each element defines one protocol.

Each protocol is implemented as a Java class. When a protocol stack is created based on the

above XML configuration, the first element ("UDP") becomes the bottom-most layer, the second

one will be placed on the first, etc: the stack is created from the bottom to the top.

Each element has to be the name of a Java class that resides in the org.jgroups.protocols

package. Note that only the base name has to be given, not the fully specified class

name (UDP instead of org.jgroups.protocols.UDP). If the protocol class is not found,

JGroups assumes that the name given is a fully qualified classname and will therefore

try to instantiate that class. If this does not work an exception is thrown. This allows for

protocol classes to reside in different packages altogether, e.g. a valid protocol name could be

com.sun.eng.protocols.reliable.UCAST.

Each layer may have zero or more arguments, which are specified as a list of name/value pairs in

parentheses directly after the protocol name. In the example above, UDP is configured with some

options, one of them being the IP multicast port (mcast_port) which is set to 45588, or to the value

of the system property jgroups.udp.mcast_port, if set.

Note that all members in a group have to have the same protocol stack.

3.8.1.1. Programmatic creation

Usually, channels are created by passing the name of an XML configuration file to the JChannel()

constructor. On top of this declarative configuration, JGroups provides an API to create a

channel programmatically. The way to do this is to first create a JChannel, then an instance of

ProtocolStack, then add all desired protocols to the stack and finally calling init() on the stack to

set it up. The rest, e.g. calling JChannel.connect() is the same as with the declarative creation.

An example of how to programmatically create a channel is shown below (copied from

ProgrammaticChat):

public class ProgrammaticChat {

 public static void main(String[] args) throws Exception {

 JChannel ch=new JChannel(false); // (1)

 ProtocolStack stack=new ProtocolStack(); // (2)

 ch.setProtocolStack(stack);

 stack.addProtocol(new UDP().setValue("bind_addr",

 InetAddress.getByName("192.168.1.5")))

 .addProtocol(new PING())

 .addProtocol(new MERGE3())

Chapter 3. API

24

 .addProtocol(new FD_SOCK())

 .addProtocol(new FD_ALL().setValue("timeout", 12000)

 .setValue("interval", 3000))

 .addProtocol(new VERIFY_SUSPECT())

 .addProtocol(new BARRIER())

 .addProtocol(new NAKACK())

 .addProtocol(new UNICAST2())

 .addProtocol(new STABLE())

 .addProtocol(new GMS())

 .addProtocol(new UFC())

 .addProtocol(new MFC())

 .addProtocol(new FRAG2()); // (3)

 stack.init(); // (4)

 ch.setReceiver(new ReceiverAdapter() {

 public void viewAccepted(View new_view) {

 System.out.println("view: " + new_view);

 }

 public void receive(Message msg) {

 Address sender=msg.getSrc();

 System.out.println(msg.getObject() + " [" + sender + "]");

 }

 });

 ch.connect("ChatCluster");

 for(;;) {

 String line=Util.readStringFromStdin(": ");

 ch.send(null, line);

 }

 }

}

First a JChannel is created (1). The 'false' argument tells the channel not to create a ProtocolStack.

This is needed because we will create one ourselves later and set it in the channel (2).

Next, all protocols are added to the stack (3). Note that the order is from bottom (transport protocol)

to top. So UDP as transport is added first, then PING and so on, until FRAG2, which is the top

protocol. Every protocol can be configured via setters, but there is also a generic setValue(String

attr_name, Object value), which can be used to configure protocols as well, as shown in the

example.

Once the stack is configured, we call ProtocolStack.init() to link all protocols correctly and to call

init() in every protocol instance (4). After this, the channel is ready to be used and all subsequent

Giving the channel a logical name

25

actions (e.g. connect()) can be executed. When the init() method returns, we have essentially the

equivalent of new JChannel(config_file).

3.8.2. Giving the channel a logical name

A channel can be given a logical name which is then used instead of the channel's address in

toString(). A logical name might show the function of a channel, e.g. "HostA-HTTP-Cluster", which

is more legible than a UUID 3c7e52ea-4087-1859-e0a9-77a0d2f69f29.

For example, when we have 3 channels, using logical names we might see

a view "{A,B,C}", which is nicer than "{56f3f99e-2fc0-8282-9eb0-866f542ae437,

ee0be4af-0b45-8ed6-3f6e-92548bfa5cde, 9241a071-10ce-a931-f675-ff2e3240e1ad} !"

If no logical name is set, JGroups generates one, using the hostname and a random number,

e.g. linux-3442. If this is not desired and the UUIDs should be shown, use system property -

Djgroups.print_uuids=true.

The logical name can be set using:

public void setName(String logical_name);

This must be done before connecting a channel. Note that the logical name stays with a channel

until the channel is destroyed, whereas a UUID is created on each connection.

When JGroups starts, it prints the logical name and the associated physical address(es):

GMS: address=mac-53465, cluster=DrawGroupDemo, physical

 address=192.168.1.3:49932

The logical name is mac-53465 and the physical address is 192.168.1.3:49932. The UUID is not

shown here.

3.8.3. Generating custom addresses

Since 2.12 address generation is pluggable. This means that an application can determine what

kind of addresses it uses. The default address type is UUID, and since some protocols use UUID,

it is recommended to provide custom classes as subclasses of UUID.

This can be used to for example pass additional data around with an address, for example

information about the location of the node to which the address is assigned. Note that methods

equals(), hashCode() and compare() of the UUID super class should not be changed.

To use custom addresses, an implementation of org.jgroups.stack.AddressGenerator has

to be written.

Chapter 3. API

26

For any class CustomAddress, it will need to get registered with the ClassConfigurator in order

to marshal it correctly:

class CustomAddress extends UUID {

 static {

 ClassConfigurator.add((short)8900, CustomAddress.class);

 }

}

Note

Note that the ID should be chosen such that it doesn't collide with any IDs defined

in jg-magic-map.xml.

Set the address generator in JChannel: setAddressGenerator(AddressGenerator). This has to be

done before the channel is connected.

An example of a subclass is org.jgroups.util.PayloadUUID, and there are 2 more shipped

with JGroups.

3.8.4. Joining a cluster

When a client wants to join a cluster, it connects to a channel giving the name of the cluster to

be joined:

public void connect(String cluster) throws Exception;

The cluster name is the name of the cluster to be joined. All channels that call connect() with the

same name form a cluster. Messages sent on any channel in the cluster will be received by all

members (including the one who sent it 3).

The connect() method returns as soon as the cluster has been joined successfully. If the channel

is in the closed state (see Figure 3.2, “Channel states”), an exception will be thrown. If there are no

other members, i.e. no other member has connected to a cluster with this name, then a new cluster

is created and the member joins it as first member. The first member of a cluster becomes its

coordinator. A coordinator is in charge of installing new views whenever the membership changes
4 .

3 Local delivery can be turned off using setDiscardOwnMessages(true).
4This is managed internally however, and an application programmer does not need to be concerned about it.

Joining a cluster and getting the state in one operation

27

3.8.5. Joining a cluster and getting the state in one operation

Clients can also join a cluster and fetch cluster state in one operation. The best way to

conceptualize the connect and fetch state connect method is to think of it as an invocation of the

regular connect() and getState() methods executed in succession. However, there are several

advantages of using the connect and fetch state connect method over the regular connect. First

of all, the underlying message exchange is heavily optimized, especially if the flush protocol is

used. But more importantly, from a client's perspective, the connect() and fetch state operations

become one atomic operation.

public void connect(String cluster, Address target, long timeout) throws Exception;

Just as in a regular connect(), the cluster name represents a cluster to be joined. The target

parameter indicates a cluster member to fetch the state from. A null target indicates that the state

should be fetched from the cluster coordinator. If the state should be fetched from a particular

member other than the coordinator, clients can simply provide the address of that member. The

timeout paremeter bounds the entire join and fetch operation. An exception will be thrown if the

timeout is exceeded.

3.8.6. Getting the local address and the cluster name

Method getAddress() returns the address of the channel. The address may or may not be

available when a channel is in the unconnected state.

public Address getAddress();

Method getClusterName() returns the name of the cluster which the member joined.

public String getClusterName();

Again, the result is undefined if the channel is in the disconnected or closed state.

3.8.7. Getting the current view

The following method can be used to get the current view of a channel:

public View getView();

This method returns the current view of the channel. It is updated every time a new view is installed

(viewAccepted() callback).

Chapter 3. API

28

Calling this method on an unconnected or closed channel is implementation defined. A channel

may return null, or it may return the last view it knew of.

3.8.8. Sending messages

Once the channel is connected, messages can be sent using one of the send() methods:

public void send(Message msg) throws Exception;

public void send(Address dst, Serializable obj) throws Exception;

public void send(Address dst, byte[] buf) throws Exception;

public void send(Address dst, byte[] buf, int off, int len) throws Exception;

The first send() method has only one argument, which is the message to be sent. The message's

destination should either be the address of the receiver (unicast) or null (multicast). When the

destination is null, the message will be sent to all members of the cluster (including itself).

The remainaing send() methods are helper methods; they take either a byte[] buffer or a

serializable, create a Message and call send(Message).

If the channel is not connected, or was closed, an exception will be thrown upon attempting to

send a message.

Here's an example of sending a message to all members of a cluster:

Map data; // any serializable data

channel.send(null, data);

The null value as destination address means that the message will be sent to all members in

the cluster. The payload is a hashmap, which will be serialized into the message's buffer and

unserialized at the receiver. Alternatively, any other means of generating a byte buffer and setting

the message's buffer to it (e.g. using Message.setBuffer()) also works.

Here's an example of sending a unicast message to the first member (coordinator) of a group:

Map data;

Address receiver=channel.getView().getMembers().get(0);

channel.send(receiver, "hello world");

Sending messages

29

The sample code determines the coordinator (first member of the view) and sends it a "hello world"

message.

3.8.8.1. Discarding one's own messages

Sometimes, it is desirable not to have to deal with one's own messages, ie. messages sent by

oneself. To do this, JChannel.setDiscardOwnMessages(boolean flag) can be set to true (false

by default). This means that every cluster node will receive a message sent by P, but P itself won't.

Note that this method replaces the old JChannel.setOpt(LOCAL, false) method, which was

removed in 3.0.

3.8.8.2. Synchronous messages

While JGroups guarantees that a message will eventually be delivered at all non-faulty members,

sometimes this might take a while. For example, if we have a retransmission protocol based on

negative acknowledgments, and the last message sent is lost, then the receiver(s) will have to wait

until the stability protocol notices that the message has been lost, before it can be retransmitted.

This can be changed by setting the Message.RSVP flag in a message: when this flag is

encountered, the message send blocks until all members have acknowledged reception of the

message (of course excluding members which crashed or left meanwhile).

This also serves as another purpose: if we send an RSVP-tagged message, then - when the

send() returns - we're guaranteed that all messages sent before will have been delivered at all

members as well. So, for example, if P sends message 1-10, and marks 10 as RSVP, then, upon

JChannel.send() returning, P will know that all members received messages 1-10 from P.

Note that since RSVP'ing a message is costly, and might block the sender for a while, it should be

used sparingly. For example, when completing a unit of work (ie. member P sending N messages),

and P needs to know that all messages were received by everyone, then RSVP could be used.

To use RSVP, 2 things have to be done:

First, the RSVP protocol has to be in the config, somewhere above the reliable transmission

protocols such as NAKACK or UNICAST(2), e.g.:

<config>

 <UDP/>

 <PING />

 <FD_ALL/>

 <pbcast.NAKACK use_mcast_xmit="true"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200"/>

 <RSVP />

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="4M"/>

Chapter 3. API

30

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

 ...

</config>

Secondly, the message we want to get ack'ed must be tagged with RSVP:

Message msg=new Message(null, null, "hello world");

msg.setFlag(Message.RSVP);

ch.send(msg);

Here, we send a message to all cluster members (dest = null). (Note that RSVP also works for

sending a message to a unicast destination). Method send() will return as soon as it has received

acks from all current members. If there are 4 members A, B, C and D, and A has received acks

from itself, B and C, but D's ack is missing and D crashes before the timeout kicks in, then this

will nevertheless make send() return, as if D had actually sent an ack.

If the timeout property if greater than 0, and we don't receive all acks within timeout milliseconds,

a TimeoutException will be thrown (if RSVP.throw_exception_on_timeout is true). The application

can choose to catch this (runtime) exception and do something with it, e.g. retry.

The configuration of RSVP is described here: Section 7.6.6, “RSVP”.

Note

RSVP was added in version 3.1.

3.8.9. Receiving messages

Method receive() in ReceiverAdapter (or Receiver) can be overridden to receive messages,

views, and state transfer callbacks.

public void receive(Message msg);

A Receiver can be registered with a channel using JChannel.setReceiver(). All received

messages, view changes and state transfer requests will invoke callbacks on the registered

Receiver:

Receiving view changes

31

JChannel ch=new JChannel();

ch.setReceiver(new ReceiverAdapter() {

 public void receive(Message msg) {

 System.out.println("received message " + msg);

 }

 public void viewAccepted(View view) {

 System.out.println("received view " + new_view);

 }

});

ch.connect("MyCluster");

3.8.10. Receiving view changes

As shown above, the viewAccepted() callback of ReceiverAdapter can be used to get

callbacks whenever a cluster membership change occurs. The receiver needs to be set via

JChannel.setReceiver(Receiver).

As discussed in Section 3.2.4, “ReceiverAdapter”, code in callbacks must avoid anything that

takes a lot of time, or blocks; JGroups invokes this callback as part of the view installation, and if

this user code blocks, the view installation would block, too.

3.8.11. Getting the group's state

A newly joined member may want to retrieve the state of the cluster before starting work. This

is done with getState():

public void getState(Address target, long timeout) throws Exception;

This method returns the state of one member (usually of the oldest member, the coordinator).

The target parameter can usually be null, to ask the current coordinator for the state. If a timeout

(ms) elapses before the state is fetched, an exception will be thrown. A timeout of 0 waits until

the entire state has been transferred.

Note

The reason for not directly returning the state as a result of getState() is that

the state has to be returned in the correct position relative to other messages.

Returning it directly would violate the FIFO properties of a channel, and state

transfer would not be correct !

To participate in state transfer, both state provider and state requester have to implement the

following callbacks from ReceiverAdapter (Receiver):

Chapter 3. API

32

public void getState(OutputStream output) throws Exception;

public void setState(InputStream input) throws Exception;

Method getState() is invoked on the state provider (usually the coordinator). It needs to write its

state to the output stream given. Note that output doesn't need to be closed when done (or when

an exception is thrown); this is done by JGroups.

The setState() method is invoked on the state requester; this is the member which called

JChannel.getState(). It needs to read its state from the input stream and set its internal state to

it. Note that input doesn't need to be closed when done (or when an exception is thrown); this

is done by JGroups.

In a cluster consisting of A, B and C, with D joining the cluster and calling Channel.getState(), the

following sequence of callbacks happens:

• D calls JChannel.getState(). The state will be retrieved from the oldest member, A

• A's getState() callback is called. A writes its state to the output stream passed as a parameter

to getState().

• D's setState() callback is called with an input stream as argument. D reads the state from the

input stream and sets its internal state to it, overriding any previous data.

• D: JChannel.getState() returns. Note that this will only happen after the state has been

transferred successfully, or a timeout elapsed, or either the state provider or requester throws

an exception. Such an exception will be re-thrown by getState(). This could happen for instance

if the state provider's getState() callback tries to stream a non-serializable class to the output

stream.

The following code fragment shows how a group member participates in state transfers:

public void getState(OutputStream output) throws Exception {

 synchronized(state) {

 Util.objectToStream(state, new DataOutputStream(output));

 }

}

public void setState(InputStream input) throws Exception {

 List<String> list;

 list=(List<String>)Util.objectFromStream(new DataInputStream(input));

 synchronized(state) {

 state.clear();

Getting the group's state

33

 state.addAll(list);

 }

 System.out.println(list.size() + " messages in chat history):");

 for(String str: list)

 System.out.println(str);

 }

}

This code is the Chat example from the JGroups tutorial and the state here is a list of strings.

The getState() implementation synchronized on the state (so no incoming messages can modify

it during the state transfer), and uses the JGroups utility method objectToStream().

Performance when writing to an output stream

If a lot of smaller fragments are written to an output stream, it is best to wrap the

output stream into a BufferedOutputStream, e.g.

Util.objectToStream(state,

 new BufferedOutputStream(

 new DataOutputStream(output)));

The setState() implementation also uses the Util.objectFromStream() utility method to read the

state from the input stream and assign it to its internal list.

3.8.11.1. State transfer protocols

In order to use state transfer, a state transfer protocol has to be included in the configuration. This

can either be STATE_TRANSFER, STATE, or STATE_SOCK. More details on the protocols can

be found at Chapter 7, List of Protocols.

3.8.11.1.1. STATE_TRANSFER

The is the original state transfer protocol, which used to transfer byte[] buffers. It still does that, but

is internally converted to call the getState() and setState() callbacks which use input and output

streams.

Note that, because byte[] buffers are converted into input and output streams, this protocol should

not be used for transfer of large states.

For details see Section 7.12.1, “pbcast.STATE_TRANSFER”.

Chapter 3. API

34

3.8.11.1.2. STATE

This is the STREAMING_STATE_TRANSFER protocol, renamed in 3.0. It sends the entire state

across from the provider to the requester in (configurable) chunks, so that memory consumption

is minimal.

For details see Section 7.12.3, “pbcast.STATE”.

3.8.11.1.3. STATE_SOCK

Same as STREAMING_STATE_TRANSFER, but a TCP connection between provider and

requester is used to transfer the state.

For details see Section 7.12.4, “STATE_SOCK”.

3.8.12. Disconnecting from a channel

Disconnecting from a channel is done using the following method:

public void disconnect();

It will have no effect if the channel is already in the disconnected or closed state. If connected, it

will leave the cluster. This is done (transparently for a channel user) by sending a leave request to

the current coordinator. The latter will subsequently remove the leaving node from the view and

install a new view in all remaining members.

After a successful disconnect, the channel will be in the unconnected state, and may subsequently

be reconnected.

3.8.13. Closing a channel

To destroy a channel instance (destroy the associated protocol stack, and release all resources),

method close() is used:

public void close();

Closing a connected channel disconnects the channel first.

The close() method moves the channel to the closed state, in which no further operations are

allowed (most throw an exception when invoked on a closed channel). In this state, a channel

instance is not considered used any longer by an application and -- when the reference to the

instance is reset -- the channel essentially only lingers around until it is garbage collected by the

Java runtime system.

Chapter 4.

35

Building Blocks
Building blocks are layered on top of channels, and can be used instead of channels whenever

a higher-level interface is required.

Whereas channels are simple socket-like constructs, building blocks may offer a far more

sophisticated interface. In some cases, building blocks offer access to the underlying channel,

so that -- if the building block at hand does not offer a certain functionality -- the channel can be

accessed directly. Building blocks are located in the org.jgroups.blocks package.

4.1. MessageDispatcher

Channels are simple patterns to asynchronously send and receive messages. However, a

significant number of communication patterns in group communication require synchronous

communication. For example, a sender would like to send a message to the group and wait for all

responses. Or another application would like to send a message to the group and wait only until

the majority of the receivers have sent a response, or until a timeout occurred.

MessageDispatcher provides blocking (and non-blocking) request sending and response

correlation. It offers synchronous (as well as asynchronous) message sending with request-

response correlation, e.g. matching one or multiple responses with the original request.

An example of using this class would be to send a request message to all cluster members, and

block until all responses have been received, or until a timeout has elapsed.

Contrary to Section 4.2, “RpcDispatcher”, MessageDispatcher deals with sending message

requests and correlating message responses, while RpcDispatcher deals with invoking method

calls and correlating responses. RpcDispatcher extends MessageDispatcher, and offers an even

higher level of abstraction over MessageDispatcher.

RpcDispatcher is essentially a way to invoke remote procedure calls (RCs) across a cluster.

Both MessageDispatcher and RpcDispatcher sit on top of a channel; therefore an instance of

MessageDispatcher is created with a channel as argument. It can now be used in both client

and server role: a client sends requests and receives responses and a server receives requests

and sends responses. MessageDispatcher allows for an application to be both at the same time.

To be able to serve requests in the server role, the RequestHandler.handle() method has to

be implemented:

Object handle(Message msg) throws Exception;

The handle() method is called whenever a request is received. It must return a value (must be

serializable, but can be null) or throw an exception. The returned value will be sent to the sender,

and exceptions are also propagated to the sender.

Chapter 4. Building Blocks

36

Before looking at the methods of MessageDispatcher, let's take a look at RequestOptions first.

4.1.1. RequestOptions

Every message sending in MessageDispatcher or request invocation in RpcDispatcher is

governed by an instance of RequestOptions. This is a class which can be passed to a call to

define the various options related to the call, e.g. a timeout, whether the call should block or not,

the flags (see Section 5.13, “Tagging messages with flags”) etc.

The various options are:

• Response mode: this determines whether the call is blocking and - if yes - how long it should

block. The modes are:

• GET_ALL: block until responses from all members (minus the suspected ones) have been

received.

• GET_NONE: wait for none. This makes the call non-blocking

• GET_FIRST: block until the first response (from anyone) has been received

• GET_MAJORITY: block until a majority of members have responded

• Timeout: number of milliseconds we're willing to block. If the call hasn't terminated after the

timeout elapsed, a TimeoutException will be thrown. A timeout of 0 means to wait forever. The

timeout is ignored if the call is non-blocking (mode=GET_NONE)

• Anycasting: if set to true, this means we'll use unicasts to individual members rather than

sending multicasts. For example, if we have have TCP as transport, and the cluster is

{A,B,C,D,E}, and we send a message through MessageDispatcher where dests={C,D}, and we

do not want to send the request to everyone, then we'd set anycasting=true. This will send the

request to C and D only, as unicasts, which is better if we use a transport such as TCP which

cannot use IP multicasting (sending 1 packet to reach all members).

• Response filter: A RspFilter allows for filtering of responses and user-defined termination of a

call. For example, if we expect responses from 10 members, but can return after having received

3 non-null responses, a RspFilter could be used. See Section 4.2.2, “Response filters” for a

discussion on response filters.

• Scope: a short, defining a scope. This allows for concurrent delivery of messages from the same

sender. See Section 5.4.4, “Scopes: concurrent message delivery for messages from the same

sender” for a discussion on scopes.

• Flags: the various flags to be passed to the message, see Section 5.13, “Tagging messages

with flags” for details.

• Exclusion list: here we can pass a list of members (addresses) that should be excluded. For

example, if the view is A,B,C,D,E, and we set the exclusion list to A,C then the caller will wait

RequestOptions

37

for responses from everyone except A and C. Also, every recipient that's in the exclusion list

will discard the message.

An example of how to use RequestOptions is:

RpcDispatcher disp;

RequestOptions opts=new RequestOptions(Request.GET_ALL)

 .setFlags(Message.NO_FC).setFlags(Message.DONT_BUNDLE);

Object val=disp.callRemoteMethod(target, method_call, opts);

The methods to send requests are:

public <T> RspList<T>

 castMessage(final Collection<Address> dests,

 Message msg,

 RequestOptions options) throws Exception;

public <T> NotifyingFuture<RspList<T>>

 castMessageWithFuture(final Collection<Address> dests,

 Message msg,

 RequestOptions options) throws Exception;

public <T> T sendMessage(Message msg,

 RequestOptions opts) throws Exception;

public <T> NotifyingFuture<T>

 sendMessageWithFuture(Message msg,

 RequestOptions options) throws Exception;

castMessage() sends a message to all members defined in dests. If dests is null, the message

will be sent to all members of the current cluster. Note that a possible destination set in the

message will be overridden. If a message is sent synchronously (defined by options.mode) then

options.timeout defines the maximum amount of time (in milliseconds) to wait for the responses.

castMessage() returns a RspList, which contains a map of addresses and Rsps; there's one Rsp

per member listed in dests.

A Rsp instance contains the response value (or null), an exception if the target handle() method

threw an exception, whether the target member was suspected, or not, and so on. See the example

below for more details.

castMessageWithFuture() returns immediately, with a future. The future can be used to fetch

the response list (now or later), and it also allows for installation of a callback which will be invoked

whenever the future is done. See Section 4.2.1.1, “Asynchronous calls with futures” for details on

how to use NotifyingFutures.

Chapter 4. Building Blocks

38

sendMessage() allows an application programmer to send a unicast message to a single

cluster member and receive the response. The destination of the message has to be non-

null (valid address of a member). The mode argument is ignored (it is by default set to

ResponseMode.GET_FIRST) unless it is set to GET_NONE in which case the request becomes

asynchronous, ie. we will not wait for the response.

sendMessageWithFuture() returns immediately with a future, which can be used to fetch the

result.

One advantage of using this building block is that failed members are removed from the set of

expected responses. For example, when sending a message to 10 members and waiting for all

responses, and 2 members crash before being able to send a response, the call will return with 8

valid responses and 2 marked as failed. The return value of castMessage() is a RspList which

contains all responses (not all methods shown):

public class RspList<T> implements Map<Address,Rsp> {

 public boolean isReceived(Address sender);

 public int numSuspectedMembers();

 public List<T> getResults();

 public List<Address> getSuspectedMembers();

 public boolean isSuspected(Address sender);

 public Object get(Address sender);

 public int size();

}

isReceived() checks whether a response from sender has already been received. Note that this

is only true as long as no response has yet been received, and the member has not been marked

as failed. numSuspectedMembers() returns the number of members that failed (e.g. crashed)

during the wait for responses. getResults() returns a list of return values. get() returns the

return value for a specific member.

4.1.2. Requests and target destinations

When a non-null list of addresses is passed (as the destination list) to

MessageDispatcher.castMessage() or RpcDispatcher.callRemoteMethods(), then this does not

mean that only the members included in the list will receive the message, but rather it means that

we'll only wait for responses from those members, if the call is blocking.

If we want to restrict the reception of a message to the destination members, there are a few

ways to do this:

• If we only have a few destinations to send the message to, use several unicasts.

• Use anycasting. E.g. if we have a membership of {A,B,C,D,E,F}, but only want A and C to

receive the message, then set the destination list to A and C and enable anycasting in the

Example

39

RequestOptions passed to the call (see above). This means that the transport will send 2

unicasts.

• Use exclusion lists. If we have a membership of {A,B,C,D,E,F}, and want to send a message

to almost all members, but exclude D and E, then we can define an exclusion list: this is done

by settting the destination list to null (= send to all members), or to {A,B,C,D,E,F} and set the

exclusion list in the RequestOptions passed to the call to D and E.

4.1.3. Example

This section shows an example of how to use a MessageDispatcher.

public class MessageDispatcherTest implements RequestHandler {

 Channel channel;

 MessageDispatcher disp;

 RspList rsp_list;

 String props; // to be set by application programmer

 public void start() throws Exception {

 channel=new JChannel(props);

 disp=new MessageDispatcher(channel, null, null, this);

 channel.connect("MessageDispatcherTestGroup");

 for(int i=0; i < 10; i++) {

 Util.sleep(100);

 System.out.println("Casting message #" + i);

 rsp_list=disp.castMessage(null,

 new Message(null, null, new String("Number #" + i)),

 ResponseMode.GET_ALL, 0);

 System.out.println("Responses:\n" +rsp_list);

 }

 channel.close();

 disp.stop();

 }

 public Object handle(Message msg) throws Exception {

 System.out.println("handle(): " + msg);

 return "Success !";

 }

 public static void main(String[] args) {

 try {

 new MessageDispatcherTest().start();

 }

 catch(Exception e) {

 System.err.println(e);

 }

Chapter 4. Building Blocks

40

 }

}

The example starts with the creation of a channel. Next, an instance of MessageDispatcher is

created on top of the channel. Then the channel is connected. The MessageDispatcher will from

now on send requests, receive matching responses (client role) and receive requests and send

responses (server role).

We then send 10 messages to the group and wait for all responses. The timeout argument is 0,

which causes the call to block until all responses have been received.

The handle() method simply prints out a message and returns a string. This will be sent back

to the caller as a response value (in Rsp.value). Has the call thrown an exception, Rsp.exception

would be set instead.

Finally both the MessageDispatcher and channel are closed.

4.2. RpcDispatcher

RpcDispatcher is derived from MessageDispatcher. It allows a programmer to invoke remote

methods in all (or single) cluster members and optionally wait for the return value(s). An application

will typically create a channel first, and then create an RpcDispatcher on top of it. RpcDispatcher

can be used to invoke remote methods (client role) and at the same time be called by other

members (server role).

Compared toMessageDispatcher, no handle() method needs to be implemented. Instead the

methods to be called can be placed directly in the class using regular method definitions (see

example below). The methods will get invoked using reflection.

To invoke remote method calls (unicast and multicast) the following methods are used:

public <T> RspList<T>

 callRemoteMethods(Collection<Address> dests,

 String method_name,

 Object[] args,

 Class[] types,

 RequestOptions options) throws Exception;

public <T> RspList<T>

 callRemoteMethods(Collection<Address> dests,

 MethodCall method_call,

 RequestOptions options) throws Exception;

public <T> NotifyingFuture<RspList<T>>

 callRemoteMethodsWithFuture(Collection<Address> dests,

 MethodCall method_call,

 RequestOptions options) throws Exception;

Example

41

public <T> T callRemoteMethod(Address dest,

 String method_name,

 Object[] args,

 Class[] types,

 RequestOptions options) throws Exception;

public <T> T callRemoteMethod(Address dest,

 MethodCall call,

 RequestOptions options) throws Exception;

public <T> NotifyingFuture<T>

 callRemoteMethodWithFuture(Address dest,

 MethodCall call,

 RequestOptions options) throws Exception;

The family of callRemoteMethods() methods is invoked with a list of receiver addresses. If

null, the method will be invoked in all cluster members (including the sender). Each call takes

the target members to invoke it on (null mean invoke on all cluster members), a method and a

RequestOption.

The method can be given as (1) the method name, (2) the arguments and (3) the argument types,

or a MethodCall (containing a java.lang.reflect.Method and argument) can be given instead.

As with MessageDispatcher, a RspList or a future to a RspList is returned.

The family of callRemoteMethod() methods takes almost the same parameters, except that there

is only one destination address instead of a list. If the dest argument is null, the call will fail.

The callRemoteMethod() calls return the actual result (or type T), or throw an exception if the

method threw an exception on the target member.

Java's Reflection API is used to find the correct method in the target member according to the

method name and number and types of supplied arguments. There is a runtime exception if a

method cannot be resolved.

Note that we could also use method IDs and the MethodLookup interface to resolve methods,

which is faster and has every RPC carry less data across the wire. To see how this is done, have

a look at some of the MethodLookup implementations, e.g. in RpcDispatcherSpeedTest.

4.2.1. Example

The code below shows an example of using RpcDispatcher:

public class RpcDispatcherTest {

 JChannel channel;

 RpcDispatcher disp;

 RspList rsp_list;

Chapter 4. Building Blocks

42

 String props; // set by application

 public static int print(int number) throws Exception {

 return number * 2;

 }

 public void start() throws Exception {

 MethodCall call=new MethodCall(getClass().getMethod("print", int.class));

 RequestOptions opts=new RequestOptions(ResponseMode.GET_ALL, 5000);

 channel=new JChannel(props);

 disp=new RpcDispatcher(channel, this);

 channel.connect("RpcDispatcherTestGroup");

 for(int i=0; i < 10; i++) {

 Util.sleep(100);

 rsp_list=disp.callRemoteMethods(null,

 "print",

 new Object[]{i},

 new Class[]{int.class},

 opts);

 // Alternative: use a (prefabricated) MethodCall:

 // call.setArgs(i);

 // rsp_list=disp.callRemoteMethods(null, call, opts);

 System.out.println("Responses: " + rsp_list);

 }

 channel.close();

 disp.stop();

 }

 public static void main(String[] args) throws Exception {

 new RpcDispatcherTest().start();

 }

}

Class RpcDispatcher defines method print() which will be called subsequently. The entry

point start() creates a channel and an RpcDispatcher which is layered on top. Method

callRemoteMethods() then invokes the remote print() in all cluster members (also in the caller).

When all responses have been received, the call returns and the responses are printed.

As can be seen, the RpcDispatcher building block reduces the amount of code that needs to

be written to implement RPC-based group communication applications by providing a higher

abstraction level between the application and the primitive channels.

4.2.1.1. Asynchronous calls with futures

When invoking a synchronous call, the calling thread is blocked until the response (or responses)

has been received.

Response filters

43

A Future allows a caller to return immediately and grab the result(s) later. In 2.9, two new methods,

which return futures, have been added to RpcDispatcher:

public NotifyingFuture<RspList>

 callRemoteMethodsWithFuture(Collection<Address> dests,

 MethodCall method_call,

 RequestOptions options) throws Exception;

public <T> NotifyingFuture<T>

 callRemoteMethodWithFuture(Address dest,

 MethodCall call,

 RequestOptions options) throws Exception;

A NotifyingFuture extends java.util.concurrent.Future, with its regular methods such as isDone(),

get() and cancel(). NotifyingFuture adds setListener<FutureListener> to get notified when the

result is available. This is shown in the following code:

NotifyingFuture<RspList> future=dispatcher.callRemoteMethodsWithFuture(...);

future.setListener(new FutureListener() {

 void futureDone(Future<T> future) {

 System.out.println("result is " + future.get());

 }

});

4.2.2. Response filters

Response filters allow application code to hook into the reception of responses from cluster

members and can let the request-response execution and correlation code know (1) wether a

response is acceptable and (2) whether more responses are needed, or whether the call (if

blocking) can return. The RspFilter interface looks as follows:

public interface RspFilter {

 boolean isAcceptable(Object response, Address sender);

 boolean needMoreResponses();

}

Chapter 4. Building Blocks

44

isAcceptable() is given a response value and the address of the member which sent the

response, and needs to decide whether the response is valid (should return true) or not (should

return false).

needMoreResponses() determine whether a call returns or not.

The sample code below shows how to use a RspFilter:

public void testResponseFilter() throws Exception {

 final long timeout = 10 * 1000 ;

 RequestOptions opts;

 opts=new RequestOptions(ResponseMode.GET_ALL,

 timeout, false,

 new RspFilter() {

 int num=0;

 public boolean isAcceptable(Object response,

 Address sender) {

 boolean retval=((Integer)response).intValue() > 1;

 if(retval)

 num++;

 return retval;

 }

 public boolean needMoreResponses() {

 return num < 2;

 }

 });

 RspList rsps=disp1.callRemoteMethods(null, "foo", null, null, opts);

 System.out.println("responses are:\n" + rsps);

 assert rsps.size() == 3;

 assert rsps.numReceived() == 2;

}

Here, we invoke a cluster wide RPC (dests=null), which blocks (mode=GET_ALL) for 10 seconds

max (timeout=10000), but also passes an instance of RspFilter to the call (in options).

The filter accepts all responses whose value is greater than 2, and returns as soon as it has

received 2 responses which satisfy the above condition.

Be careful with RspFilters

If we have a RspFilter which doesn't terminate the call even if responses from all

members have been received, we might block forever (if no timeout was given) !

For example, if we have 10 members, and every member returns 1 or 2 as return

Asynchronous invocation in MessageDispatcher and RpcDispatcher

45

value of foo() in the above code, then isAcceptable() would always return false,

therefore never incrementing 'num', and needMoreResponses() would always

return true; this would never terminate the call if it wasn't for the timeout of 10

seconds !

This was fixed in 3.1; a blocking call will always return if we've received as many

responses as we have members in 'dests', regardless of what the RspFilter says.

4.3. Asynchronous invocation in MessageDispatcher

and RpcDispatcher

By default, a message received by a MessageDispatcher or RpcDispatcher is dispatched into

application code by calling method handle from RequestHandler:

public interface RequestHandler {

 Object handle(Message msg) throws Exception;

}

In the case of RpcDispatcher, the handle() method converts the message's contents into a method

call, invokes the method against the target object and returns the result (or throws an exception).

The return value of handle() is then sent back to the sender of the message.

The invocation is synchronous, ie. done on the thread responsible for dispatching this particular

message from the network up the stack all the way into the application. The thread is therefore

unusable for the duration of the method invocation.

If the invocation takes a while, e.g. because locks are acquired or the application waits on some

I/O, as the current thread is busy, another thread will be used for a different request message.

This can quickly lead to the thread pool being exhausted or many messages getting queued if the

pool has an associated queue.

Therefore a new way of dispatching messages to the application was devised: the asynchronous

invocation API:

Note

The asynchronous invocation API was added in 3.3

public interface AsyncRequestHandler extends RequestHandler {

Chapter 4. Building Blocks

46

 void handle(Message request, Response response) throws Exception;

}

Extending RequestHandler, interface AsyncRequestHandler adds an additional method taking a

request message and a Response object. The request message contains the same information as

before (e.g. a method call plus args). The Response argument is used to send a reply (if needed)

at a later time, when processing is done.

public interface Response {

 void send(Object reply, boolean is_exception);

}

Response encapsulates information about the request (e.g. request ID and sender), and has

method reply() to send a response. The is_exception parameter can be set to true if the reply is

actually an exception, e.g. that was thrown when handle() ran application code.

The advantage of the new API is that it can, but doesn't have to, be used asynchronously. The

default implementation still uses the synchronous invocation style:

public void handle(Message request, Response response) throws Exception {

 Object retval=handle(request);

 if(response != null)

 response.send(retval, false);

}

Method handle() is called, which synchronously calls into application code and returns a result,

which is subsequently sent back to the sender of the request message.

However, an application could subclass MessageDispatcher or RpcDispatcher (as done in

Infinispan), or it could set a custom request handler via MessageDispatcher.setRequestHandler(),

and implement handle() by dispatching the processing to a thread from a thread pool. The

thread which guided the request message from the network up to this point would be therefore

immediately released and could be used for other messages. The response would be sent

whenever the invocation of application code is done, and thus the thread from the thread pool

would not be blocked on I/O, trying to acquire locks or anything else that blocks in application code.

To set the mode which is used, method MessageDispatcher.asyncDispatching(boolean) can be

used. This can be changed even at runtime, to switch between sync and async invocation style.

ReplicatedHashMap

47

Asynchrounous invocation is typically used in conjunction with an application thread pool. The

application knows (JGroups doesn't) which requests can be processed in parallel and which ones

can't. For example, all OOB calls could be dispatched directly to the thread pool, as ordering of

OOB requests is not important, but regular requests should be added to a queue where they are

processed sequentually.

The main benefit here is that request dispatching (and ordering) is now under application control

if the application wants to do that. If not, we can still use synchronous invocation.

A good example where asynchronous invocation makes sense are replicated web sessions. If a

cluster node A has 1000 web sessions, then replication of updates across the cluster generates

messages from A. Because JGroups delivers messages from the same sender sequentially, even

updates to unrelated web sessions are delivered in strict order.

With asynchronous invocation, the application could devise a dispatching strategy which assigns

updates to different (unrelated) web sessions to any available thread from the pool, but queues

updates to the same session, and processes those by the same thread, to provide ordering of

updates to the same session. This would speed up overall processing, as updates to a web session

1 on A don't have to wait until all updates to an unrelated web session 2 on A have been processed.

This is similar to what the Section 7.14.4, “SCOPE” protocol tried to achieve.

4.4. ReplicatedHashMap

This class was written as a demo of how state can be shared between nodes of a cluster. It has

never been heavily tested and is therefore not meant to be used in production.

A ReplicatedHashMap uses a concurrent hashmap internally and allows to create several

instances of hashmaps in different processes. All of these instances have exactly the same state

at all times. When creating such an instance, a cluster name determines which cluster of replicated

hashmaps will be joined. The new instance will then query the state from existing members and

update itself before starting to service requests. If there are no existing members, it will simply

start with an empty state.

Modifications such as put(), clear() or remove() will be propagated in orderly fashion to all

replicas. Read-only requests such as get() will only be invoked on the local hashmap.

Since both keys and values of a hashtable will be sent across the network, they have to be

serializable. Putting a non-serializable value in the map will result in an exception at marshalling

time.

A ReplicatedHashMap allows to register for notifications, e.g. when data is added removed. All

listeners will get notified when such an event occurs. Notification is always local; for example in

the case of removing an element, first the element is removed in all replicas, which then notify

their listener(s) of the removal (after the fact).

ReplicatedHashMap allow members in a group to share common state across process and

machine boundaries.

Chapter 4. Building Blocks

48

4.5. ReplCache

ReplCache is a distributed cache which - contrary to ReplicatedHashMap - doesn't replicate its

values to all cluster members, but just to selected backups.

A put(K,V,R) method has a replication count R which determines on how many cluster members

key K and value V should be stored. When we have 10 cluster members, and R=3, then K and V

will be stored on 3 members. If one of those members goes down, or leaves the cluster, then a

different member will be told to store K and V. ReplCache tries to always have R cluster members

store K and V.

A replication count of -1 means that a given key and value should be stored on all cluster members.

The mapping between a key K and the cluster member(s) on which K will be stored is always

deterministic, and is computed using a consistent hash function.

Note that this class was written as a demo of how state can be shared between nodes of a cluster.

It has never been heavily tested and is therefore not meant to be used in production.

4.6. Cluster wide locking

In 2.12, a new distributed locking service was added, replacing DistributedLockManager. The new

service is implemented as a protocol and is used via org.jgroups.blocks.locking.LockService.

LockService talks to the locking protocol via events. The main abstraction of a distributed lock is

an implementation of java.util.concurrent.locks.Lock. All lock methods are supported, however,

conditions are not fully supported, and still need some more testing (as of July 2011).

Below is an example of how LockService is typically used:

// locking.xml needs to have a locking protocol

JChannel ch=new JChannel("/home/bela/locking.xml");

LockService lock_service=new LockService(ch);

ch.connect("lock-cluster");

Lock lock=lock_service.getLock("mylock");

lock.lock();

try {

 // do something with the locked resource

}

finally {

 lock.unlock();

}

In the example, we create a channel, then a LockService, then connect the channel. If the

channel's configuration doesn't include a locking protocol, an exception will be thrown. Then we

Locking and merges

49

grab a lock named "mylock", which we lock and subsequently unlock. If another member P had

already acquired "mylock", we'd block until P released the lock, or P left the cluster or crashed.

Note that the owner of a lock is always a given thread in a cluster, so the owner is the JGroups

address and the thread ID. This means that different threads inside the same JVM trying to access

the same named lock will compete for it. If thread-22 grabs the lock first, then thread-5 will block

until thread-23 releases the lock.

JGroups includes a demo (org.jgroups.demos.LockServiceDemo), which can be used to

interactively experiment with distributed locks. LockServiceDemo -h dumps all command line

options.

Currently (Jan 2011), there are 2 protocols which provide locking: Section 7.14.10.2,

“PEER_LOCK” and Section 7.14.10.1, “CENTRAL_LOCK”. The locking protocol has to be placed

at or towards the top of the stack (close to the channel).

4.6.1. Locking and merges

The following scenario is susceptible to network partitioning and subsequent merging: we have a

cluster view of {A,B,C,D} and then the cluster splits into {A,B} and {C,D}. Assume that B and D now

acquire a lock "mylock". This is what happens (with the locking protocol being CENTRAL_LOCK):

• There are 2 coordinators: A for {A,B} and C for {C,D}

• B successfully acquires "mylock" from A

• D successfully acquires "mylock" from C

• The partitions merge back into {A,B,C,D}. Now, only A is the coordinator, but C ceases to be

a coordinator

• Problem: D still holds a lock which should actually be invalid !

There is no easy way (via the Lock API) to 'remove' the lock from D. We could for example simply

release D's lock on "mylock", but then there's no way telling D that the lock it holds is actually stale !

Therefore the recommended solution here is for nodes to listen to MergeView changes if they

expect merging to occur, and re-acquire all of their locks after a merge, e.g.:

Lock l1, l2, l3;

LockService lock_service;

...

public void viewAccepted(View view) {

 if(view instanceof MergeView) {

 new Thread() {

 public void run() {

Chapter 4. Building Blocks

50

 lock_service.unlockAll();

 // stop all access to resources protected by l1, l2 or l3

 // every thread needs to re-acquire the locks it holds

 }

 }.start

 }

}

4.7. Cluster wide task execution

In 2.12, a distributed execution service was added. The new service is implemented as a protocol

and is used via org.jgroups.blocks.executor.ExecutionService.

ExecutionService extends java.util.concurrent.ExecutorService and distributes tasks submitted

to it across the cluster, trying to distribute the tasks to the cluster members as evenly as possible.

When a cluster member leaves or dies, the tasks is was processing are re-distributed to other

members in the cluster.

ExecutionService talks to the executing protocol via events. The main abstraction is

an implementation of java.util.concurrent.ExecutorService. All methods are supported. The

restrictions are however that the Callable or Runnable must be Serializable, Externalizable or

Streamable. Also the result produced from the future needs to be Serializable, Externalizable or

Streamable. If the Callable or Runnable are not, then an IllegalArgumentException is immediately

thrown. If a result is not, then a NotSerializableException with the name of the class will be returned

to the Future as an exception cause.

Below is an example of how ExecutionService is typically used:

// executing.xml needs to have a locking protocol

JChannel ch=new JChannel("/home/bela/executing.xml");

ExecutionService exec_service =new ExecutionService(ch);

ch.connect("exec-cluster");

Future<Value> future = exec_service.submit(new MyCallable());

try {

 Value value = future.get();

 // Do something with value

}

catch (InterruptedException e) {

 e.printStackTrace();

}

catch (ExecutionException e) {

 e.getCause().printStackTrace();

}

Cluster wide task execution

51

In the example, we create a channel, then an ExecutionService, then connect the channel. Then

we submit our callable giving us a Future. Then we wait for the future to finish returning our value

and do something with it. If any exception occurs we print the stack trace of that exception.

The ExecutionService follows the Producer-Consumer Pattern very closely. The

ExecutionService is used as the Producer for this Pattern. Therefore the service only passes

tasks off to be handled and doesn't do anything with the actual invocation of those tasks. There

is a separate class that can was written specifically as a consumer, which can be ran on any

node of the cluster. This class is ExecutionRunner and implements java.lang.Runnable. A user is

required to run one or more instances of a ExecutionRunner on a node of the cluster. By having

a thread run one of these runners, that thread has no volunteered to be able to run any task that

is submitted to the cluster via an ExecutionService. This allows for any node in the cluster to

participate or not participate in the running of these tasks and also any node can optionally run

more than 1 ExecutionRunner if this node has additional capacity to do so. A runner will run

indefinately until the thread that is currently running it is interrupted. If a task is running when the

runner is interrupted the task will be interrupted.

Below is an example of how simple it is to have a single node start and allow for 10 distributed

tasks to be executed simultaneously on it:

int runnerCount = 10;

// locking.xml needs to have a locking protocol

JChannel ch=new JChannel("/home/bela/executing.xml");

ch.connect("exec-cluster");

ExecutionRunner runner = new ExecutionRunner(ch);

ExecutorService service = Executors.newFixedThreadPool(runnerCount);

for (int i = 0; i < runnerCount; ++i) {

 // If you want to stop the runner hold onto the future

 // and cancel with interrupt.

 service.submit(runner);

}

In the example, we create a channel, then connect the channel, then an ExecutionRunner. Then

we create a java.util.concurrent.ExecutorService that is used to start 10 threads that each thread

runs the ExecutionRunner. This allows for this node to have 10 threads actively accept and work

on requests submitted via any ExecutionService in the cluster.

Since an ExecutionService does not allow for non serializable class instances to be sent across

as tasks there are 2 utility classes provided to get around this problem. For users that are used to

using a CompletionService with an Executor there is an equivalent ExecutionCompletionService

provided that allows for a user to have the same functionality. It would have been preferred to

allow for the same ExecutorCompletionService to be used, but due to it's implementation using a

Chapter 4. Building Blocks

52

non serializable object the ExecutionCompletionService was implemented to be used instead in

conjunction with an ExecutorService. Also utility class was designed to help users to submit tasks

which use a non serializable class. The Executions class contains a method serializableCallable

which allows for a user to pass a constructor of a class that implements Callable and it's arguments

to then return to a user a Callable that will upon running will automatically create and object from

the constructor passing the provided arguments to it and then will call the call method on the object

and return it's result as a normal callable. All the arguments provided must still be serializable and

the return object as detailed previously.

JGroups includes a demo (org.jgroups.demos.ExecutionServiceDemo), which can be used

to interactively experiment with a distributed sort algorithm and performance. This is for

demonstration purposes and performance should not be assumed to be better than local.

ExecutionServiceDemo -h dumps all command line options.

Currently (July 2011), there is 1 protocol which provide executions: Section 7.14.11,

“CENTRAL_EXECUTOR”. The executing protocol has to be placed at or towards the top of the

stack (close to the channel).

4.8. Cluster wide atomic counters

Cluster wide counters provide named counters (similar to AtomicLong) which can be changed

atomically. 2 nodes incrementing the same counter with initial value 10 will see 11 and 12 as

results, respectively.

To create a named counter, the following steps have to be taken:

1. Add protocol COUNTER to the top of the stack configuration

2. Create an instance of CounterService

3. Create a new or get an existing named counter

4. Use the counter to increment, decrement, get, set, compare-and-set etc the counter

In the first step, we add COUNTER to the top of the protocol stack configuration:

<config>

 ...

 <MFC max_credits="2M"

 min_threshold="0.4"/>

 <FRAG2 frag_size="60K" />

 <COUNTER bypass_bundling="true" timeout="5000"/>

</config>

Cluster wide atomic counters

53

Configuration of the COUNTER protocol is described in Section 7.14.12, “COUNTER”.

Next, we create a CounterService, which is used to create and delete named counters:

ch=new JChannel(props);

CounterService counter_service=new CounterService(ch);

ch.connect("counter-cluster");

Counter counter=counter_service.getOrCreateCounter("mycounter", 1);

In the sample code above, we create a channel first, then create the CounterService referencing

the channel. Then we connect the channel and finally create a new named counter "mycounter",

with an initial value of 1. If the counter already exists, the existing counter will be returned and

the initial value will be ignored.

CounterService doesn't consume any messages from the channel over which it is created; instead

it grabs a reference to the COUNTER protocols and invokes methods on it directly. This has the

advantage that CounterService is non-intrusive: many instances can be created over the same

channel. CounterService even co-exists with other services which use the same mechanism, e.g.

LockService or ExecutionService (see above).

The returned counter instance implements interface Counter:

package org.jgroups.blocks.atomic;

public interface Counter {

 public String getName();

 /**

 * Gets the current value of the counter

 * @return The current value

 */

 public long get();

 /**

 * Sets the counter to a new value

 * @param new_value The new value

 */

 public void set(long new_value);

 /**

 * Atomically updates the counter using a CAS operation

 *

 * @param expect The expected value of the counter

Chapter 4. Building Blocks

54

 * @param update The new value of the counter

 * @return True if the counter could be updated, false otherwise

 */

 public boolean compareAndSet(long expect, long update);

 /**

 * Atomically increments the counter and returns the new value

 * @return The new value

 */

 public long incrementAndGet();

 /**

 * Atomically decrements the counter and returns the new value

 * @return The new value

 */

 public long decrementAndGet();

 /**

 * Atomically adds the given value to the current value.

 *

 * @param delta the value to add

 * @return the updated value

 */

 public long addAndGet(long delta);

}

4.8.1. Design

The design of COUNTER is described in details in CounterService [https://github.com/belaban/

JGroups/blob/master/doc/design/CounterService.txt].

In a nutshell, in a cluster the current coordinator maintains a hashmap of named counters.

Members send requests (increment, decrement etc) to it, and the coordinator atomically applies

the requests and sends back responses.

The advantage of this centralized approach is that - regardless of the size of a cluster - every

request has a constant execution cost, namely a network round trip.

A crash or leaving of the coordinator is handled as follows. The coordinator maintains a version

for every counter value. Whenever the counter value is changed, the version is incremented. For

every request that modifies a counter, both the counter value and the version are returned to the

requester. The requester caches all counter values and associated versions in its own local cache.

When the coordinator leaves or crashes, the next-in-line member becomes the new coordinator.

It then starts a reconciliation phase, and discards all requests until the reconciliation phase has

https://github.com/belaban/JGroups/blob/master/doc/design/CounterService.txt
https://github.com/belaban/JGroups/blob/master/doc/design/CounterService.txt
https://github.com/belaban/JGroups/blob/master/doc/design/CounterService.txt

Design

55

completed. The reconciliation phase solicits all members for their cached values and versions. To

reduce traffic, the request also carries all version numbers with it.

Clients return values whose versions are higher than the ones shipped by the new coordinator. The

new coordinator waits for responses from all members or timeout milliseconds. Then it updates

its own hashmap with values whose versions are higher than its own. Finally, it stops discarding

requests and sends a resend message to all clients in order to resend any requests that might

be pending.

There's another edge case that also needs to be covered: if a client P updates a counter, and both

P and the coordinator crash, then the update is lost. To reduce the chances of this happening,

COUNTER can be enabled to replicate all counter changes to one or more backup coordinators.

The num_backups property defines the number of such backups. Whenever a counter was

changed in the current coordinator, it also updates the backups (asynchronously). 0 disables this.

56

Chapter 5.

57

Advanced Concepts
This chapter discusses some of the more advanced concepts of JGroups with respect to using

it and setting it up correctly.

5.1. Using multiple channels

When using a fully virtual synchronous protocol stack, the performance may not be great because

of the larger number of protocols present. For certain applications, however, throughput is more

important than ordering, e.g. for video/audio streams or airplane tracking. In the latter case, it

is important that airplanes are handed over between control domains correctly, but if there are

a (small) number of radar tracking messages (which determine the exact location of the plane)

missing, it is not a problem. The first type of messages do not occur very often (typically a number

of messages per hour), whereas the second type of messages would be sent at a rate of 10-30

messages/second. The same applies for a distributed whiteboard: messages that represent a

video or audio stream have to be delivered as quick as possible, whereas messages that represent

figures drawn on the whiteboard, or new participants joining the whiteboard have to be delivered

according to a certain order.

The requirements for such applications can be solved by using two separate channels: one

for control messages such as group membership, floor control etc and the other one for data

messages such as video/audio streams (actually one might consider using one channel for audio

and one for video). The control channel might use virtual synchrony, which is relatively slow, but

enforces ordering and retransmission, and the data channel might use a simple UDP channel,

possibly including a fragmentation layer, but no retransmission layer (losing packets is preferred

to costly retransmission).

5.2. Sharing a transport between multiple channels in a

JVM

A transport protocol (UDP, TCP) has all the resources of a stack: the default thread pool, the OOB

thread pool and the timer thread pool. If we run multiple channels in the same JVM, instead of

creating 4 separate stacks with a separate transport each, we can create the transport protocol

as a singleton protocol, shared by all 4 stacks.

If those transports happen to be the same (all 4 channels use UDP, for example), then we can

share them and only create 1 instance of UDP. That transport instance is created and started only

once; when the first channel is created, and is deleted when the last channel is closed.

If we have 4 channels inside of a JVM (as is the case in an application server such as JBoss), then

we have 12 separate thread pools (3 per transport, 4 transports). Sharing the transport reduces

this to 3.

Chapter 5. Advanced Concepts

58

Each channel created over a shared transport has to join a different cluster. An exception will be

thrown if a channel sharing a transport tries to connect to a cluster to which another channel over

the same transport is already connected.

This is needed to multiplex and de-multiplex messages between the shared transport and the

different stacks running over it; when we have 3 channels (C1 connected to "cluster-1", C2

connected to "cluster-2" and C3 connected to "cluster-3") sending messages over the same

shared transport, the cluster name with which the channel connected is used to multiplex

messages over the shared transport: a header with the cluster name ("cluster-1") is added when

C1 sends a message.

When a message with a header of "cluster-1" is received by the shared transport, it is used to

demultiplex the message and dispatch it to the right channel (C1 in this example) for processing.

How channels can share a single transport is shown in Figure 5.1, “A shared transport”.

Sharing a transport between multiple channels in a JVM

59

Figure 5.1. A shared transport

Here we see 4 channels which share 2 transports. Note that first 3 channels which share transport

"tp_one" have the same protocols on top of the shared transport. This is not required; the protocols

above "tp_one" could be different for each of the 3 channels as long as all applications residing

on the same shared transport have the same requirements for the transport's configuration.

The "tp_two" transport is used by the application on the right side.

Note that the physical address of a shared channel is the same for all connected channels, so all

applications sharing the first transport have physical address 192.168.2.5:35181.

Chapter 5. Advanced Concepts

60

To use shared transports, all we need to do is to add a property "singleton_name" to the transport

configuration. All channels with the same singleton name will be shared:

<UDP ...

 singleton_name="tp_one" ...

/>

All channels using this configuration will now shared transport "tp_one". The channel on the right

will have a different configuration, with singleton_name="tp_two".

5.3. Transport protocols

A transport protocol refers to the protocol at the bottom of the protocol stack which is responsible

for sending messages to and receiving messages from the network. There are a number of

transport protocols in JGroups. They are discussed in the following sections.

A typical protocol stack configuration using UDP is:

<config xmlns="urn:org:jgroups"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/

jgroups.xsd">

 <UDP

 mcast_port="${jgroups.udp.mcast_port:45588}"

 tos="8"

 ucast_recv_buf_size="20M"

 ucast_send_buf_size="640K"

 mcast_recv_buf_size="25M"

 mcast_send_buf_size="640K"

 loopback="true"

 discard_incompatible_packets="true"

 max_bundle_size="64K"

 max_bundle_timeout="30"

 ip_ttl="${jgroups.udp.ip_ttl:2}"

 enable_bundling="true"

 enable_diagnostics="true"

 thread_naming_pattern="cl"

 timer_type="new"

 timer.min_threads="4"

 timer.max_threads="10"

 timer.keep_alive_time="3000"

 timer.queue_max_size="500"

Transport protocols

61

 thread_pool.enabled="true"

 thread_pool.min_threads="2"

 thread_pool.max_threads="8"

 thread_pool.keep_alive_time="5000"

 thread_pool.queue_enabled="true"

 thread_pool.queue_max_size="10000"

 thread_pool.rejection_policy="discard"

 oob_thread_pool.enabled="true"

 oob_thread_pool.min_threads="1"

 oob_thread_pool.max_threads="8"

 oob_thread_pool.keep_alive_time="5000"

 oob_thread_pool.queue_enabled="false"

 oob_thread_pool.queue_max_size="100"

 oob_thread_pool.rejection_policy="Run"/>

 <PING timeout="2000"

 num_initial_members="3"/>

 <MERGE3 max_interval="30000"

 min_interval="10000"/>

 <FD_SOCK/>

 <FD_ALL/>

 <VERIFY_SUSPECT timeout="1500" />

 <BARRIER />

 <pbcast.NAKACK use_mcast_xmit="true"

 retransmit_timeout="300,600,1200"

 discard_delivered_msgs="true"/>

 <UNICAST timeout="300,600,1200"/>

 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="4M"/>

 <pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

 <UFC max_credits="2M"

 min_threshold="0.4"/>

 <MFC max_credits="2M"

 min_threshold="0.4"/>

 <FRAG2 frag_size="60K" />

 <pbcast.STATE_TRANSFER />

</config>

In a nutshell the properties of the protocols are:

UDP

This is the transport protocol. It uses IP multicasting to send messages to the entire cluster,

or individual nodes. Other transports include TCP and TUNNEL.

Chapter 5. Advanced Concepts

62

PING

This is the discovery protocol. It uses IP multicast (by default) to find initial members. Once

found, the current coordinator can be determined and a unicast JOIN request will be sent to

it in order to join the cluster.

MERGE3

Will merge sub-clusters back into one cluster, kicks in after a network partition healed.

FD_SOCK

Failure detection based on sockets (in a ring form between members). Generates notification

if a member fails

FD / FD_ALL

Failure detection based on heartbeat are-you-alive messages. Generates notification if a

member fails

VERIFY_SUSPECT

Double-checks whether a suspected member is really dead, otherwise the suspicion

generated from protocol below is discarded

BARRIER

Needed to transfer state; this will block messages that modify the shared state until a digest

has been taken, then unblocks all threads. Not needed if no state transfer protocol is present.

pbcast.NAKACK

Ensures (a) message reliability and (b) FIFO. Message reliability guarantees that a message

will be received. If not, the receiver(s) will request retransmission. FIFO guarantees that all

messages from sender P will be received in the order P sent them

UNICAST

Same as NAKACK for unicast messages: messages from sender P will not be lost

(retransmission if necessary) and will be in FIFO order (conceptually the same as TCP in

TCP/IP)

pbcast.STABLE

Deletes messages that have been seen by all members (distributed message garbage

collection)

pbcast.GMS

Membership protocol. Responsible for joining/leaving members and installing new views.

UFC

Unicast Flow Control. Provides flow control between 2 members.

MFC

Multicast Flow Control. Provides flow control between a sender and all cluster members.

FRAG2

Fragments large messages into smaller ones and reassembles them back at the receiver

side. For both multicast and unicast messages

Message bundling

63

STATE_TRANSFER

Ensures that state is correctly transferred from an existing member (usually the coordinator)

to a new member.

5.3.1. Message bundling

Message bundling is beneficial when sending many small messages; it queues them until they

have accumulated a certain size, or until a timeout has elapsed. Then, the queued messages

are assembled into a larger message, and that message is then sent. At the receiver, the large

message is disassembled and the smaller messages are sent up the stack.

When sending many smaller messages, the ratio between payload and message headers might

be small; say we send a "hello" string: the payload here is 7 bytes, whereas the addresses and

headers (depending on the stack configuration) might be 30 bytes. However, if we bundle (say)

100 messages, then the payload of the large message is 700 bytes, but the header is still 30

bytes. Thus, we're able to send more actual data across the wire with one large message than

many smaller ones.

Message bundling is conceptually similar to TCP's Nagling algorithm.

A sample configuration is shown below:

<UDP

 enable_bundling="true"

 max_bundle_size="64K"

 max_bundle_timeout="30"

/>

Here, bundling is enabled (the default). The max accumulated size is 64'000 bytes and we wait

for 30 ms max. If at time T0, we're sending 10 smaller messages with an accumulated size of

2'000 bytes, but then send no more messages, then the timeout will kick in after 30 ms and the

messages will get packed into a large message M and M will be sent. If we send 1000 messages

of 100 bytes each, then - after exceeding 64'000 bytes (after ca. 64 messages) - we'll send the

large message, and this might have taken only 3 ms.

Message bundling in 3.x

In 3.x, message bundling is the default, so it cannot be enabled or disabled

anymore (the config is ignored). However, a message can set the DONT_BUNDLE

flag to skip bundling.

Chapter 5. Advanced Concepts

64

5.3.1.1. Message bundling and performance

While message bundling is good when sending many small messages asynchronously, it can

be bad when invoking synchronous RPCs: say we're invoking 10 synchronous (blocking) RPCs

across the cluster with an RpcDispatcher (see Section 4.2, “RpcDispatcher”), and the payload of

the marshalled arguments of one call is less than 64K.

Because the RPC is blocking, we'll wait until the call has returned before invoking the next RPC.

For each RPC, the request takes up to 30 ms, and each response will also take up to 30 ms, for

a total of 60 ms per call. So the 10 blocking RPCs would take a total of 600 ms !

This is clearly not desirable. However, there's a simple solution: we can use message flags (see

Section 5.13, “Tagging messages with flags”) to override the default bundling behavior in the

transport:

RpcDispatcher disp;

RequestOptions opts=new RequestOptions(ResponseMode.GET_ALL, 5000)

 .setFlags(Message.DONT_BUNDLE);

RspList rsp_list=disp.callRemoteMethods(null,

 "print",

 new Object[]{i},

 new Class[]{int.class},

 opts);

The RequestOptions.setFlags(Message.DONT_BUNDLE) call tags the message with the

DONT_BUNDLE flag. When the message is to be sent by the transport, it will be sent immediately,

regardless of whether bundling is enabled in the transport.

Using the DONT_BUNDLE flag to invoke print() will take a few milliseconds for 10 blocking

RPCs versus 600 ms without the flag.

An alternative to setting the DONT_BUNDLE flag is to use futures to invoke 10 blocking RPCs:

List<Future<RspList>> futures=new ArrayList<Future<RspList>>();

for(int i=0; i < 10; i++) {

 Future<RspList> future=disp.callRemoteMethodsWithFuture(...);

 futures.add(future);

}

for(Future<RspList> future: futures) {

 RspList rsp_list=future.get();

 // do something with the response

}

UDP

65

Here we use callRemoteMethodsWithFuture() which (although the call is blocking!) returns

immediately, with a future. After invoking the 10 calls, we then grab the results by fetching them

from the futures.

Compared to the few milliseconds above, this will take ca 60 ms (30 for the request and 30 for

the responses), but this is still better than the 600 ms we get when not using the DONT_BUNDLE

flag. Note that, if the accumulated size of the 10 requests exceeds max_bundle_size, the large

message would be sent immediately, so this might even be faster than 30 ms for the request.

5.3.2. UDP

UDP uses IP multicast for sending messages to all members of a cluster, and UDP datagrams

for unicast messages (sent to a single member). When started, it opens a unicast and multicast

socket: the unicast socket is used to send/receive unicast messages, while the multicast socket

sends/receives multicast messages. The physical address of the channel will be the address and

port number of the unicast socket.

5.3.2.1. Using UDP and plain IP multicasting

A protocol stack with UDP as transport protocol is typically used with clusters whose members run

on the same host or are distributed across a LAN. Note that before running instances in different

subnets, an admin has to make sure that IP multicast is enabled across subnets. It is often the case

that IP multicast is not enabled across subnets. Refer to section Section 2.8, “It doesn't work !” for

running a test program that determines whether members can reach each other via IP multicast. If

this does not work, the protocol stack cannot use UDP with IP multicast as transport. In this case,

the stack has to either use UDP without IP multicasting, or use a different transport such as TCP.

5.3.2.2. Using UDP without IP multicasting

The protocol stack with UDP and PING as the bottom protocols use IP multicasting by default to

send messages to all members (UDP) and for discovery of the initial members (PING). However,

if multicasting cannot be used, the UDP and PING protocols can be configured to send multiple

unicast messages instead of one multicast message 1.

To configure UDP to use multiple unicast messages to send a group message instead of using

IP multicasting, the ip_mcast property has to be set to false.

If we disable ip_mcast, we now also have to change the discovery protocol (PING). Because

PING requires IP multicasting to be enabled in the transport, we cannot use it. Some of the

alternatives are TCPPING (static list of member addresses), TCPGOSSIP (external lookup

service), FILE_PING (shared directory), BPING (using broadcasts) or JDBC_PING (using a

shared database).

1Although not as efficient (and using more bandwidth), it is sometimes the only possibility to reach group members.

Chapter 5. Advanced Concepts

66

See Section 7.3, “Initial membership discovery” for details on configuration of different discovery

protocols.

5.3.3. TCP

TCP is a replacement for UDP as transport in cases where IP multicast cannot be used. This

may be the case when operating over a WAN, where routers might discard IP multicast packets.

Usually, UDP is used as transport in LANs, while TCP is used for clusters spanning WANs.

The properties for a typical stack based on TCP might look like this (edited for brevity):

<TCP bind_port="7800" />

<TCPPING timeout="3000"

 initial_hosts="${jgroups.tcpping.initial_hosts:HostA[7800],HostB[7801]}"

 port_range="1"

 num_initial_members="3"/>

<VERIFY_SUSPECT timeout="1500" />

<pbcast.NAKACK use_mcast_xmit="false"

 retransmit_timeout="300,600,1200,2400,4800"

 discard_delivered_msgs="true"/>

<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

 max_bytes="400000"/>

<pbcast.GMS print_local_addr="true" join_timeout="3000"

 view_bundling="true"/>

TCP

The transport protocol, uses TCP (from TCP/IP) to send unicast and multicast messages. In

the latter case, it sends multiple unicast messages.

TCPPING

Discovers the initial membership to determine coordinator. Join request will then be sent to

coordinator.

VERIFY_SUSPECT

Double checks that a suspected member is really dead

pbcast.NAKACK

Reliable and FIFO message delivery

pbcast.STABLE

Distributed garbage collection of messages seen by all members

pbcast.GMS

Membership services. Takes care of joining and removing new/old members, emits view

changes

TCP

67

When using TCP, each message to all of the cluster members is sent as multiple unicast messages

(one to each member). Due to the fact that IP multicasting cannot be used to discover the initial

members, another mechanism has to be used to find the initial membership. There are a number

of alternatives (see Section 7.3, “Initial membership discovery” for a discussion of all discovery

protocols):

• TCPPING: uses a list of well-known group members that it solicits for initial membership

• TCPGOSSIP: this requires a GossipRouter (see below), which is an external process, acting as

a lookup service. Cluster members register with under their cluster name, and new members

query the GossipRouter for initial cluster membership information.

The next two section illustrate the use of TCP with both TCPPING and TCPGOSSIP.

5.3.3.1. Using TCP and TCPPING

A protocol stack using TCP and TCPPING looks like this (other protocols omitted):

<TCP bind_port="7800" /> +

<TCPPING initial_hosts="HostA[7800],HostB[7800]" port_range="2"

 timeout="3000" num_initial_members="3" />

The concept behind TCPPING is that some selected cluster members assume the role of well-

known hosts from which the initial membership information can be retrieved. In the example,

HostA and HostB are designated members that will be used by TCPPING to lookup the initial

membership. The property bind_port in TCP means that each member should try to assign port

7800 for itself. If this is not possible it will try the next higher port (7801) and so on, until it finds

an unused port.

TCPPING will try to contact both HostA and HostB, starting at port 7800 and ending at port 7800 +

port_range, in the above example ports 7800 - 7802. Assuming that at least one of HostA or HostB

is up, a response will be received. To be absolutely sure to receive a response, it is recommended

to add all the hosts on which members of the cluster will be running to the configuration.

5.3.3.2. Using TCP and TCPGOSSIP

TCPGOSSIP uses one or more GossipRouters to (1) register itself and (2) fetch information about

already registered cluster members. A configuration looks like this:

<TCP />

<TCPGOSSIP initial_hosts="HostA[5555],HostB[5555]" num_initial_members="3" />

Chapter 5. Advanced Concepts

68

The initial_hosts property is a comma-delimited list of GossipRouters. In the example there

are two GossipRouters on HostA and HostB, at port 5555.

A member always registers with all GossipRouters listed, but fetches information from the first

available GossipRouter. If a GossipRouter cannot be accessed, it will be marked as failed and

removed from the list. A task is then started, which tries to periodically reconnect to the failed

process. On reconnection, the failed GossipRouter is marked as OK, and re-inserted into the list.

The advantage of having multiple GossipRouters is that, as long as at least one is running, new

members will always be able to retrieve the initial membership.

Note that the GossipRouter should be started before any of the members.

5.3.4. TUNNEL

Firewalls are usually placed at the connection to the internet. They shield local networks from

outside attacks by screening incoming traffic and rejecting connection attempts to host inside the

firewalls by outside machines. Most firewall systems allow hosts inside the firewall to connect to

hosts outside it (outgoing traffic), however, incoming traffic is most often disabled entirely.

Tunnels are host protocols which encapsulate other protocols by multiplexing them at one end

and demultiplexing them at the other end. Any protocol can be tunneled by a tunnel protocol.

The most restrictive setups of firewalls usually disable all incoming traffic, and only enable a few

selected ports for outgoing traffic. In the solution below, it is assumed that one TCP port is enabled

for outgoing connections to the GossipRouter.

JGroups has a mechanism that allows a programmer to tunnel a firewall. The solution involves

a GossipRouter, which has to be outside of the firewall, so other members (possibly also behind

firewalls) can access it.

The solution works as follows. A channel inside a firewall has to use protocol TUNNEL instead of

UDP or TCP as transport. The recommended discovery protocol is PING. Here's a configuration:

<TUNNEL gossip_router_hosts="HostA[12001]" />

<PING />

TUNNEL uses a GossipRouter (outside the firewall) running on HostA at port 12001 for tunneling.

Note that it is not recommended to use TCPGOSSIP for discovery if TUNNEL is used (use PING

instead). TUNNEL accepts one or multiple GossipRouters tor tunneling; they can be listed as a

comma delimited list of host[port] elements specified in property gossip_router_hosts.

TUNNEL establishes a TCP connection to the GossipRouter process (outside the firewall) that

accepts messages from members and passes them on to other members. This connection is

TUNNEL

69

initiated by the host inside the firewall and persists as long as the channel is connected to a group.

A GossipRouter will use the same connection to send incoming messages to the channel that

initiated the connection. This is perfectly legal, as TCP connections are fully duplex. Note that, if

GossipRouter tried to establish its own TCP connection to the channel behind the firewall, it would

fail. But it is okay to reuse the existing TCP connection, established by the channel.

Note that TUNNEL has to be given the hostname and port of the GossipRouter process. This

example assumes a GossipRouter is running on HostA at port12001. TUNNEL accepts one

or multiple router hosts as a comma delimited list of host[port] elements specified in property

gossip_router_hosts.

Any time a message has to be sent, TUNNEL forwards the message to GossipRouter, which

distributes it to its destination: if the message's destination field is null (send to all group members),

then GossipRouter looks up the members that belong to that group and forwards the message

to all of them via the TCP connections they established when connecting to GossipRouter. If the

destination is a valid member address, then that member's TCP connection is looked up, and the

message is forwarded to it 2 .

A GossipRouter is not a single point of failure. In a setup with multiple gossip routers, the routers

do not communicate among themselves, and a single point of failure is avoided by having each

channel simply connect to multiple available routers. In case one or more routers go down, the

cluster members are still able to exchange messages through any of the remaining available router

instances, if there are any.

For each send invocation, a channel goes through a list of available connections to routers and

attempts to send the message on each connection until it succeeds. If a message can not be sent

on any of the connections, an exception is raised. The default policy for connection selection is

random. However, we provide an plug-in interface for other policies as well.

The GossipRouter configuration is static and is not updated for the lifetime of the channel. A list

of available routers has to be provided in the channel's configuration file.

To tunnel a firewall using JGroups, the following steps have to be taken:

1. Check that a TCP port (e.g. 12001) is enabled in the firewall for outgoing traffic

2. Start the GossipRouter:

java org.jgroups.stack.GossipRouter -port 12001

3. Configure the TUNNEL protocol layer as instructed above.

4. Create a channel

The general setup is shown in Figure 5.2, “Tunneling a firewall” .

2To do so, GossipRouter maintains a mapping between cluster names and member addresses, and TCP connections.

Chapter 5. Advanced Concepts

70

Figure 5.2. Tunneling a firewall

First, the GossipRouter process is created on host B. Note that host B should be outside

the firewall, and all channels in the same group should use the same GossipRouter process.

When a channel on host A is created, its TCPGOSSIP protocol will register its address with the

GossipRouter and retrieve the initial membership (assume this is C). Now, a TCP connection with

the GossipRouter is established by A; this will persist until A crashes or voluntarily leaves the

group. When A multicasts a message to the cluster, GossipRouter looks up all cluster members

(in this case, A and C) and forwards the message to all members, using their TCP connections.

In the example, A would receive its own copy of the multicast message it sent, and another copy

would be sent to C.

This scheme allows for example Java applets , which are only allowed to connect back to the host

from which they were downloaded, to use JGroups: the HTTP server would be located on host

B and the gossip and GossipRouter daemon would also run on that host. An applet downloaded

to either A or C would be allowed to make a TCP connection to B. Also, applications behind a

firewall would be able to talk to each other, joining a group.

However, there are several drawbacks: first, having to maintain a TCP connection for the duration

of the connection might use up resources in the host system (e.g. in the GossipRouter), leading to

scalability problems, second, this scheme is inappropriate when only a few channels are located

behind firewalls, and the vast majority can indeed use IP multicast to communicate, and finally,

it is not always possible to enable outgoing traffic on 2 ports in a firewall, e.g. when a user does

not 'own' the firewall.

5.4. The concurrent stack

The concurrent stack (introduced in 2.5) provides a number of improvements over previous

releases, which has some deficiencies:

Overview

71

• Large number of threads: each protocol had by default 2 threads, one for the up and one for

the down queue. They could be disabled per protocol by setting up_thread or down_thread to

false. In the new model, these threads have been removed.

• Sequential delivery of messages: JGroups used to have a single queue for incoming messages,

processed by one thread. Therefore, messages from different senders were still processed in

FIFO order. In 2.5 these messages can be processed in parallel.

• Out-of-band messages: when an application doesn't care about the ordering properties of a

message, the OOB flag can be set and JGroups will deliver this particular message without

regard for any ordering.

5.4.1. Overview

The architecture of the concurrent stack is shown in Figure 5.3, “The concurrent stack”. The

changes were made entirely inside of the transport protocol (TP, with subclasses UDP, TCP and

TCP_NIO). Therefore, to configure the concurrent stack, the user has to modify the config for

(e.g.) UDP in the XML file.

Chapter 5. Advanced Concepts

72

Figure 5.3. The concurrent stack

The concurrent stack consists of 2 thread pools (java.util.concurrent.Executor): the out-of-band

(OOB) thread pool and the regular thread pool. Packets are received by multicast or unicast

receiver threads (UDP) or a ConnectionTable (TCP, TCP_NIO). Packets marked as OOB (with

Message.setFlag(Message.OOB)) are dispatched to the OOB thread pool, and all other packets

are dispatched to the regular thread pool.

When a thread pool is disabled, then we use the thread of the caller (e.g. multicast or unicast

receiver threads or the ConnectionTable) to send the message up the stack and into the

application. Otherwise, the packet will be processed by a thread from the thread pool, which sends

Overview

73

the message up the stack. When all current threads are busy, another thread might be created,

up to the maximum number of threads defined. Alternatively, the packet might get queued up until

a thread becomes available.

The point of using a thread pool is that the receiver threads should only receive the packets and

forward them to the thread pools for processing, because unmarshalling and processing is slower

than simply receiving the message and can benefit from parallelization.

5.4.1.1. Configuration

Note that this is preliminary and names or properties might change

We are thinking of exposing the thread pools programmatically, meaning that a developer

might be able to set both threads pools programmatically, e.g. using something like

TP.setOOBThreadPool(Executor executor).

Here's an example of the new configuration:

<UDP

 thread_naming_pattern="cl"

 thread_pool.enabled="true"

 thread_pool.min_threads="1"

 thread_pool.max_threads="100"

 thread_pool.keep_alive_time="20000"

 thread_pool.queue_enabled="false"

 thread_pool.queue_max_size="10"

 thread_pool.rejection_policy="Run"

 oob_thread_pool.enabled="true"

 oob_thread_pool.min_threads="1"

 oob_thread_pool.max_threads="4"

 oob_thread_pool.keep_alive_time="30000"

 oob_thread_pool.queue_enabled="true"

 oob_thread_pool.queue_max_size="10"

 oob_thread_pool.rejection_policy="Run"/>

The attributes for the 2 thread pools are prefixed with thread_pool and oob_thread_pool

respectively.

The attributes are listed below. The roughly correspond to the options of a

java.util.concurrent.ThreadPoolExecutor in JDK 5.

Chapter 5. Advanced Concepts

74

Table 5.1. Attributes of thread pools

Name Description

thread_naming_pattern Determines how threads are named that are

running from thread pools in concurrent stack.

Valid values include any combination of "cl"

letters, where "c" includes the cluster name and

"l" includes local address of the channel. The

default is "cl"

enabled Whether of not to use a thread pool. If set to

false, the caller's thread is used.

min_threads The minimum number of threads to use.

max_threads The maximum number of threads to use.

keep_alive_time Number of milliseconds until an idle thread is

placed back into the pool

queue_enabled Whether of not to use a (bounded) queue. If

enabled, when all minimum threads are busy,

work items are added to the queue. When the

queue is full, additional threads are created,

up to max_threads. When max_threads have

been reached (and the queue is full), the

rejection policy is consulted.

max_size The maximum number of elements in the

queue. Ignored if the queue is disabled

rejection_policy Determines what happens when the thread

pool (and queue, if enabled) is full. The default

is to run on the caller's thread. "Abort" throws

an runtime exception. "Discard" discards the

message, "DiscardOldest" discards the oldest

entry in the queue. Note that these values

might change, for example a "Wait" value might

get added in the future.

5.4.2. Elimination of up and down threads

By removing the 2 queues/protocol and the associated 2 threads, we effectively reduce the number

of threads needed to handle a message, and thus context switching overhead. We also get clear

and unambiguous semantics for Channel.send(): now, all messages are sent down the stack on

the caller's thread and the send() call only returns once the message has been put on the network.

In addition, an exception will only be propagated back to the caller if the message has not yet

been placed in a retransmit buffer. Otherwise, JGroups simply logs the error message but keeps

retransmitting the message. Therefore, if the caller gets an exception, the message should be

re-sent.

Concurrent message delivery

75

On the receiving side, a message is handled by a thread pool, either the regular or OOB thread

pool. Both thread pools can be completely eliminated, so that we can save even more threads

and thus further reduce context switching. The point is that the developer is now able to control

the threading behavior almost completely.

5.4.3. Concurrent message delivery

Up to version 2.5, all messages received were processed by a single thread, even if the messages

were sent by different senders. For instance, if sender A sent messages 1,2 and 3, and B sent

message 34 and 45, and if A's messages were all received first, then B's messages 34 and 35

could only be processed after messages 1-3 from A were processed !

Now, we can process messages from different senders in parallel, e.g. messages 1, 2 and 3 from

A can be processed by one thread from the thread pool and messages 34 and 35 from B can be

processed on a different thread.

As a result, we get a speedup of almost N for a cluster of N if every node is sending messages

and we configure the thread pool to have at least N threads. There is actually a unit test

(ConcurrentStackTest.java) which demonstrates this.

5.4.4. Scopes: concurrent message delivery for messages from

the same sender

Deprecated in 3.3

In 3.3, SCOPE is replaced with the Section 4.3, “Asynchronous invocation in

MessageDispatcher and RpcDispatcher”. SCOPE will probably be removed in 4.x.

In the previous paragraph, we showed how the concurrent stack delivers messages from different

senders concurrently. But all (non-OOB) messages from the same sender P are delivered in the

order in which P sent them. However, this is not good enough for certain types of applications.

Consider the case of an application which replicates HTTP sessions. If we have sessions X, Y and

Z, then updates to these sessions are delivered in the order in which there were performed, e.g. X1,

X2, X3, Y1, Z1, Z2, Z3, Y2, Y3, X4. This means that update Y1 has to wait until updates X1-3 have

been delivered. If these updates take some time, e.g. spent in lock acquisition or deserialization,

then all subsequent messages are delayed by the sum of the times taken by the messages ahead

of them in the delivery order.

However, in most cases, updates to different web sessions should be completely unrelated, so

they could be delivered concurrently. For instance, a modification to session X should not have

any effect on session Y, therefore updates to X, Y and Z can be delivered concurrently.

One solution to this is out-of-band (OOB) messages (see next paragraph). However, OOB

messages do not guarantee ordering, so updates X1-3 could be delivered as X1, X3, X2. If this is

Chapter 5. Advanced Concepts

76

not wanted, but messages pertaining to a given web session should all be delivered concurrently

between sessions, but ordered within a given session, then we can resort to scoped messages.

Scoped messages apply only to regular (non-OOB) messages, and are delivered concurrently

between scopes, but ordered within a given scope. For example, if we used the sessions above

(e.g. the jsessionid) as scopes, then the delivery could be as follows ('->' means sequential, '||'

means concurrent):

X1 -> X2 -> X3 -> X4 || Y1 -> Y2 -> Y3 || Z1 -> Z2 -> Z3

This means that all updates to X are delivered in parallel to updates to Y and updates to Z.

However, within a given scope, updates are delivered in the order in which they were performed,

so X1 is delivered before X2, which is deliverd before X3 and so on.

Taking the above example, using scoped messages, update Y1 does not have to wait for updates

X1-3 to complete, but is processed immediately.

To set the scope of a message, use method Message.setScope(short).

Scopes are implemented in a separate protocol called Section 7.14.4, “SCOPE”. This protocol has

to be placed somewhere above ordering protocols like UNICAST or NAKACK (or SEQUENCER

for that matter).

Uniqueness of scopes

Note that scopes should be as unique as possible. Compare this to hashing: the

fewer collisions there are, the better the concurrency will be. So, if for example,

two web sessions pick the same scope, then updates to those sessions will be

delivered in the order in which they were sent, and not concurrently. While this

doesn't cause erraneous behavior, it defies the purpose of SCOPE.

Also note that, if multicast and unicast messages have the same scope, they will

be delivered in sequence. So if A multicasts messages to the group with scope

25, and A also unicasts messages to B with scope 25, then A's multicasts and

unicasts will be delivered in order at B ! Again, this is correct, but since multicasts

and unicasts are unrelated, might slow down things !

5.4.5. Out-of-band messages

OOB messages completely ignore any ordering constraints the stack might have. Any message

marked as OOB will be processed by the OOB thread pool. This is necessary in cases where we

don't want the message processing to wait until all other messages from the same sender have

been processed, e.g. in the heartbeat case: if sender P sends 5 messages and then a response

to a heartbeat request received from some other node, then the time taken to process P's 5

messages might take longer than the heartbeat timeout, so that P might get falsely suspected !

However, if the heartbeat response is marked as OOB, then it will get processed by the OOB

Replacing the default and OOB thread pools

77

thread pool and therefore might be concurrent to its previously sent 5 messages and not trigger

a false suspicion.

The 2 unit tests UNICAST_OOB_Test and NAKACK_OOB_Test demonstrate how OOB

messages influence the ordering, for both unicast and multicast messages.

5.4.6. Replacing the default and OOB thread pools

In 2.7, there are 3 thread pools and 4 thread factories in TP:

Table 5.2. Thread pools and factories in TP

Name Description

Default thread pool This is the pool for handling incoming

messages. It can be fetched using

getDefaultThreadPool() and replaced using

setDefaultThreadPool(). When setting a thread

pool, the old thread pool (if any) will be

shutdown and all of it tasks cancelled first

OOB thread pool This is the pool for handling incoming

OOB messages. Methods to get and

set it are getOOBThreadPool() and

setOOBThreadPool()

Timer thread pool This is the thread pool for the timer. The

max number of threads is set through the

timer.num_threads property. The timer thread

pool cannot be set, it can only be retrieved

using getTimer(). However, the thread factory

of the timer can be replaced (see below)

Default thread factory This is the thread factory

(org.jgroups.util.ThreadFactory) of the default

thread pool, which handles incoming

messages. A thread pool factory is used

to name threads and possibly make

them daemons. It can be accessed

using getDefaultThreadPoolThreadFactory()

and setDefaultThreadPoolThreadFactory()

OOB thread factory This is the thread factory for the OOB

thread pool. It can be retrieved using

getOOBThreadPoolThreadFactory() and set

using method

setOOBThreadPoolThreadFactory()

Timer thread factory This is the thread factory for

the timer thread pool. It can be

Chapter 5. Advanced Concepts

78

Name Description

accessed using getTimerThreadFactory() and

setTimerThreadFactory()

Global thread factory The global thread factory can get used (e.g. by

protocols) to create threads which don't live in

the transport, e.g. the FD_SOCK server socket

handler thread. Each protocol has a method

getTransport(). Once the TP is obtained,

getThreadFactory() can be called to get the

global thread factory. The global thread factory

can be replaced with setThreadFactory()

Note

Note that thread pools and factories should be replaced after a channel has been

created and before it is connected (JChannel.connect()).

5.4.7. Sharing of thread pools between channels in the same

JVM

In 2.7, the default and OOB thread pools can be shared between instances running inside the

same JVM. The advantage here is that multiple channels running within the same JVM can pool

(and therefore save) threads. The disadvantage is that thread naming will not show to which

channel instance an incoming thread belongs to.

Note that we can not just shared thread pools between JChannels within the same JVM, but we

can also share entire transports. For details see Section 5.2, “Sharing a transport between multiple

channels in a JVM”.

5.5. Using a custom socket factory

JGroups creates all of its sockets through a SocketFactory, which is located in the transport

(TP) or TP.ProtocolAdapter (in a shared transport). The factory has methods to create sockets

(Socket, ServerSocket, DatagramSocket and MulticastSocket) 3, closen sockets and list all

open sockets. Every socket creation method has a service name, which could be for example

"jgroups.fd_sock.srv_sock". The service name is used to look up a port (e.g. in a config file) and

create the correct socket.

To provide one's own socket factory, the following has to be done: if we have a non-shared

transport, the code below creates a SocketFactory implementation and sets it in the transport:

3 Currently, SocketFactory does not support creation of NIO sockets / channels.

Handling network partitions

79

JChannel ch;

MySocketFactory factory; // e.g. extends DefaultSocketFactory

ch=new JChannel("config.xml");

ch.setSocketFactory(new MySocketFactory());

ch.connect("demo");

If a shared transport is used, then we have to set 2 socket factories: 1 in the shared transport and

one in the TP.ProtocolAdapter:

JChannel c1=new JChannel("config.xml"), c2=new JChannel("config.xml");

TP transport=c1.getProtocolStack().getTransport();

transport.setSocketFactory(new MySocketFactory("transport"));

c1.setSocketFactory(new MySocketFactory("first-cluster"));

c2.setSocketFactory(new MySocketFactory("second-cluster"));

c1.connect("first-cluster");

c2.connect("second-cluster");

First, we grab one of the channels to fetch the transport and set a SocketFactory in it. Then we set

one SocketFactory per channel that resides on the shared transport. When JChannel.connect()

is called, the SocketFactory will be set in TP.ProtocolAdapter.

5.6. Handling network partitions

Network partitions can be caused by switch, router or network interface crashes, among other

things. If we have a cluster {A,B,C,D,E} spread across 2 subnets {A,B,C} and {D,E} and the switch

to which D and E are connected crashes, then we end up with a network partition, with subclusters

{A,B,C} and {D,E}.

A, B and C can ping each other, but not D or E, and vice versa. We now have 2 coordinators,

A and D. Both subclusters operate independently, for example, if we maintain a shared state,

subcluster {A,B,C} replicate changes to A, B and C.

This means, that if during the partition, some clients access {A,B,C}, and others {D,E}, then we

end up with different states in both subclusters. When a partition heals, the merge protocol (e.g.

MERGE3) will notify A and D that there were 2 subclusters and merge them back into {A,B,C,D,E},

with A being the new coordinator and D ceasing to be coordinator.

The question is what happens with the 2 diverged substates ?

Chapter 5. Advanced Concepts

80

There are 2 solutions to merging substates: first we can attempt to create a new state from the

2 substates, and secondly we can shut down all members of the non primary partition, such that

they have to re-join and possibly reacquire the state from a member in the primary partition.

In both cases, the application has to handle a MergeView (subclass of View), as shown in the

code below:

public void viewAccepted(View view) {

 if(view instanceof MergeView) {

 MergeView tmp=(MergeView)view;

 Vector<View> subgroups=tmp.getSubgroups();

 // merge state or determine primary partition

 // run in a separate thread !

 }

}

It is essential that the merge view handling code run on a separate thread if it needs more than

a few milliseconds, or else it would block the calling thread.

The MergeView contains a list of views, each view represents a subgroups and has the list of

members which formed this group.

5.6.1. Merging substates

The application has to merge the substates from the various subgroups ({A,B,C} and {D,E}) back

into one single state for {A,B,C,D,E}. This task has to be done by the application because JGroups

knows nothing about the application state, other than it is a byte buffer.

If the in-memory state is backed by a database, then the solution is easy: simply discard the in-

memory state and fetch it (eagerly or lazily) from the DB again. This of course assumes that the

members of the 2 subgroups were able to write their changes to the DB. However, this is often

not the case, as connectivity to the DB might have been severed by the network partition.

Another solution could involve tagging the state with time stamps. On merging, we could compare

the time stamps for the substates and let the substate with the more recent time stamps win.

Yet another solution could increase a counter for a state each time the state has been modified.

The state with the highest counter wins.

Again, the merging of state can only be done by the application. Whatever algorithm is picked to

merge state, it has to be deterministic.

5.6.2. The primary partition approach

The primary partition approach is simple: on merging, one subgroup is designated as the primary

partition and all others as non-primary partitions. The members in the primary partition don't do

The primary partition approach

81

anything, whereas the members in the non-primary partitions need to drop their state and re-

initialize their state from fresh state obtained from a member of the primary partition.

The code to find the primary partition needs to be deterministic, so that all members pick the

same primary partition. This could be for example the first view in the MergeView, or we could sort

all members of the new MergeView and pick the subgroup which contained the new coordinator

(the one from the consolidated MergeView). Another possible solution could be to pick the

largest subgroup, and, if there is a tie, sort the tied views lexicographically (all Addresses have a

compareTo() method) and pick the subgroup with the lowest ranked member.

Here's code which picks as primary partition the first view in the MergeView, then re-acquires the

state from the new coordinator of the combined view:

public static void main(String[] args) throws Exception {

 final JChannel ch=new JChannel("/home/bela/udp.xml");

 ch.setReceiver(new ExtendedReceiverAdapter() {

 public void viewAccepted(View new_view) {

 handleView(ch, new_view);

 }

 });

 ch.connect("x");

 while(ch.isConnected())

 Util.sleep(5000);

 }

 private static void handleView(JChannel ch, View new_view) {

 if(new_view instanceof MergeView) {

 ViewHandler handler=new ViewHandler(ch, (MergeView)new_view);

 // requires separate thread as we don't want to block JGroups

 handler.start();

 }

 }

 private static class ViewHandler extends Thread {

 JChannel ch;

 MergeView view;

 private ViewHandler(JChannel ch, MergeView view) {

 this.ch=ch;

 this.view=view;

 }

 public void run() {

 Vector<View> subgroups=view.getSubgroups();

 View tmp_view=subgroups.firstElement(); // picks the first

 Address local_addr=ch.getLocalAddress();

 if(!tmp_view.getMembers().contains(local_addr)) {

Chapter 5. Advanced Concepts

82

 System.out.println("Not member of the new primary partition ("

 + tmp_view + "), will re-acquire the state");

 try {

 ch.getState(null, 30000);

 }

 catch(Exception ex) {

 }

 }

 else {

 System.out.println("Not member of the new primary partition ("

 + tmp_view + "), will do nothing");

 }

 }

}

The handleView() method is called from viewAccepted(), which is called whenever there is a new

view. It spawns a new thread which gets the subgroups from the MergeView, and picks the first

subgroup to be the primary partition. Then, if it was a member of the primary partition, it does

nothing, and if not, it reaqcuires the state from the coordinator of the primary partition (A).

The downside to the primary partition approach is that work (= state changes) on the non-primary

partition is discarded on merging. However, that's only problematic if the data was purely in-

memory data, and not backed by persistent storage. If the latter's the case, use state merging

discussed above.

It would be simpler to shut down the non-primary partition as soon as the network partition is

detected, but that a non trivial problem, as we don't know whether {D,E} simply crashed, or whether

they're still alive, but were partitioned away by the crash of a switch. This is called a split brain

syndrome, and means that none of the members has enough information to determine whether it

is in the primary or non-primary partition, by simply exchanging messages.

5.6.3. The Split Brain syndrome and primary partitions

In certain situations, we can avoid having multiple subgroups where every subgroup is able to

make progress, and on merging having to discard state of the non-primary partitions.

If we have a fixed membership, e.g. the cluster always consists of 5 nodes, then we can run code

on a view reception that determines the primary partition. This code

• assumes that the primary partition has to have at least 3 nodes

• any cluster which has less than 3 nodes doesn't accept modfications. This could be done for

shared state for example, by simply making the {D,E} partition read-only. Clients can access

the {D,E} partition and read state, but not modify it.

• As an alternative, clusters without at least 3 members could shut down, so in this case D and

E would leave the cluster.

Flushing: making sure every node in the cluster received a message

83

The algorithm is shown in pseudo code below:

On initialization:

 - Mark the node as read-only

On view change V:

 - If V has >= N members:

 - If not read-write: get state from coord and switch to read-write

 - Else: switch to read-only

Of course, the above mechanism requires that at least 3 nodes are up at any given time, so

upgrades have to be done in a staggered way, taking only one node down at a time. In the worst

case, however, this mechanism leaves the cluster read-only and notifies a system admin, who

can fix the issue. This is still better than shutting the entire cluster down.

5.7. Flushing: making sure every node in the cluster

received a message
When sending messages, the properties of the default stacks (udp.xml, tcp.xml) are that all

messages are delivered reliably to all (non-crashed) members. However, there are no guarantees

with respect to the view in which a message will get delivered. For example, when a member A

with view V1={A,B,C} multicasts message M1 to the group and D joins at about the same time,

then D may or may not receive M1, and there is no guarantee that A, B and C receive M1 in V1

or V2={A,B,C,D}.

To change this, we can turn on virtual synchrony (by adding FLUSH to the top of the stack), which

guarantees that

• A message M sent in V1 will be delivered in V1. So, in the example above, M1 would get

delivered in view V1; by A, B and C, but not by D.

• The set of messages seen by members in V1 is the same for all members before a new view

V2 is installed. This is important, as it ensures that all members in a given view see the same

messages. For example, in a group {A,B,C}, C sends 5 messages. A receives all 5 messages,

but B doesn't. Now C crashes before it can retransmit the messages to B. FLUSH will now

ensure, that before installing V2={A,B} (excluding C), B gets C's 5 messages. This is done

through the flush protocol, which has all members reconcile their messages before a new view

is installed. In this case, A will send C's 5 messages to B.

Sometimes it is important to know that every node in the cluster received all messages up to a

certain point, even if there is no new view being installed. To do this (initiate a manual flush), an

application programmer can call Channel.startFlush() to start a flush and Channel.stopFlush() to

terminate it.

Chapter 5. Advanced Concepts

84

Channel.startFlush() flushes all pending messages out of the system. This stops all senders

(calling Channel.down() during a flush will block until the flush has completed)4. When startFlush()

returns, the caller knows that (a) no messages will get sent anymore until stopFlush() is called

and (b) all members have received all messages sent before startFlush() was called.

Channel.stopFlush() terminates the flush protocol, no blocked senders can resume sending

messages.

Note that the FLUSH protocol has to be present on top of the stack, or else the flush will fail.

5.8. Large clusters

This section is a collection of best practices and tips and tricks for running large clusters on

JGroups. By large clusters, we mean several hundred nodes in a cluster. These recommendations

are captured in udp-largecluster.xml which is shipped with JGroups.

Note

This is work-in-progress, and udp-largecluster.xml is likely to see changes in

the future.

5.8.1. Reducing chattiness

When we have a chatty protocol, scaling to a large number of nodes might be a problem: too many

messages are sent and - because they are generated in addition to the regular traffic - this can

have a negative impact on the cluster. A possible impact is that more of the regular messages are

dropped, and have to be retransmitted, which impacts performance. Or heartbeats are dropped,

leading to false suspicions. So while the negative effects of chatty protocols may not be seen in

small clusters, they will be seen in large clusters !

5.8.1.1. Failure detection protocols

Failure detection protocols determine when a member is unresponsive, and subsequently suspect

it. Usually (FD, FD_ALL), messages (heartbeats) are used to determine the health of a member,

but we can also use TCP connections (FD_SOCK) to connect to a member P, and suspect P

when the connection is closed.

Heartbeating requires messages to be sent around, and we need to be careful to limit the number

of messages sent by a failure detection protocol (1) to detect crashed members and (2) when a

member has been suspected. The following sections discuss how to configure FD_ALL, FD and

FD_SOCK, the most commonly used failure detection protocols, for use in large clusters.

5.8.1.1.1. FD_SOCK

FD_SOCK is discussed in detail in Section 7.5.4, “FD_SOCK”.

4Note that block() will be called in a Receiver when the flush is about to start and unblock() will be called when it ends

STOMP support

85

5.8.1.1.2. FD

FD uses a ring topology, where every member sends heartbeats to its neighbor only. We

recommend to use this protocol only when TCP is the transport, as it generates a lot of traffic

in large clusters.

For details see Section 7.5.1, “FD”.

5.8.1.1.3. FD_ALL

FD_ALL has every member periodically multicast a heartbeat, and everyone updates internal

tables of members and their last heartbeat received. When a member hasn't received a heartbeat

from any given member for more than timeout ms, that member will get suspected.

FD_ALL is the recommended failure detection protocol when the transport provides IP multicasting

capabilities (UDP).

For details see Section 7.5.2, “FD_ALL”.

5.9. STOMP support

STOMP is a JGroups protocol which implements the STOMP [http://stomp.codehaus.org]

protocol. Currently (as of Aug 2011), transactions and acks are not implemented.

Adding the STOMP protocol to a configuration means that

• Clients written in different languages can subscribe to destinations, send messages to

destinations, and receive messages posted to (subscribed) destinations. This is similar to JMS

topics.

• Clients don't need to join any cluster; this allows for light weight clients, and we can run many

of them.

• Clients can access a cluster from a remote location (e.g. across a WAN).

• STOMP clients can send messages to cluster members, and vice versa.

The location of a STOMP protocol in a stack is shown in Figure 5.4, “STOMP in a protocol stack”.

http://stomp.codehaus.org
http://stomp.codehaus.org

Chapter 5. Advanced Concepts

86

Figure 5.4. STOMP in a protocol stack

The STOMP protocol should be near the top of the stack.

A STOMP instance listens on a TCP socket for client connections. The port and bind address of

the server socket can be defined via properties.

A client can send SUBSCRIBE commands for various destinations. When a SEND for a given

destination is received, STOMP adds a header to the message and broadcasts it to all cluster

nodes. Every node then in turn forwards the message to all of its connected clients which have

subscribed to the same destination. When a destination is not given, STOMP simply forwards the

message to all connected clients.

Traffic can be generated by clients and by servers. In the latter case, we could for example have

code executing in the address space of a JGroups (server) node. In the former case, clients

use the SEND command to send messages to a JGroups server and receive messages via the

MESSAGE command. If there is code on the server which generates messages, it is important

that both client and server code agree on a marshalling format, e.g. JSON, so that they understand

each other's messages.

Clients can be written in any language, as long as they understand the STOMP protocol. Note that

the JGroups STOMP protocol implementation sends additional information (e.g. INFO) to clients;

non-JGroups STOMP clients should simply ignore them.

JGroups comes with a STOMP client (org.jgroups.client.StompConnection) and a demo

(StompDraw). Both need to be started with the address and port of a JGroups cluster node. Once

they have been started, the JGroups STOMP protocol will notify clients of cluster changes, which

is needed so client can failover to another JGroups server node when a node is shut down. E.g.

when a client connects to C, after connection, it'll get a list of endpoints (e.g. A,B,C,D). When C

is terminated, or crashes, the client automatically reconnects to any of the remaining nodes, e.g.

A, B, or D. When this happens, a client is also re-subscribed to the destinations it registered for.

STOMP support

87

The JGroups STOMP protocol can be used when we have clients, which are either not in the

same network segment as the JGroups server nodes, or which don't want to become full-blown

JGroups server nodes. Figure 5.5, “STOMP architecture” shows a typical setup.

Figure 5.5. STOMP architecture

There are 4 nodes in a cluster. Say the cluster is in a LAN, and communication is via IP multicasting

(UDP as transport). We now have clients which do not want to be part of the cluster themselves,

e.g. because they're in a different geographic location (and we don't want to switch the main cluster

to TCP), or because clients are frequently started and stopped, and therefore the cost of startup

and joining wouldn't be amortized over the lifetime of a client. Another reason could be that clients

are written in a different language, or perhaps, we don't want a large cluster, which could be the

case if we for example have 10 JGroups server nodes and 1000 clients connected to them.

In the example, we see 9 clients connected to every JGroups cluster node. If a client connected

to node A sends a message to destination /topics/chat, then the message is multicast from node

A to all other nodes (B, C and D). Every node then forwards the message to those clients which

have previously subscribed to /topics/chat.

When node A crashes (or leaves) the JGroups STOMP clients

(org.jgroups.client.StompConnection) simply pick another server node and connect to it.

For more information about STOMP see the blog entry at http://belaban.blogspot.com/2010/10/

stomp-for-jgroups.html.

http://belaban.blogspot.com/2010/10/stomp-for-jgroups.html
http://belaban.blogspot.com/2010/10/stomp-for-jgroups.html

Chapter 5. Advanced Concepts

88

5.10. Bridging between remote clusters

In 2.12, the RELAY protocol was added to JGroups (for the properties see Section 7.14.5,

“RELAY”). It allows for bridging of remote clusters. For example, if we have a cluster in New York

(NYC) and another one in San Francisco (SFO), then RELAY allows us to bridge NYC and SFO,

so that multicast messages sent in NYC will be forwarded to SFO and vice versa.

The NYC and SFO clusters could for example use IP multicasting (UDP as transport), and the

bridge could use TCP as transport. The SFO and NYC clusters don't even need to use the same

cluster name.

Figure 5.6, “Relaying between different clusters” shows how the two clusters are bridged.

Figure 5.6. Relaying between different clusters

Views

89

The cluster on the left side with nodes A (the coordinator), B and C is called "NYC" and use IP

multicasting (UDP as transport). The cluster on the right side ("SFO") has nodes D (coordinator),

E and F.

The bridge between the local clusters NYC and SFO is essentially another cluster with the

coordinators (A and D) of the local clusters as members. The bridge typically uses TCP as

transport, but any of the supported JGroups transports could be used (including UDP, if supported

across a WAN, for instance).

Only a coordinator relays traffic between the local and remote cluster. When A crashes or leaves,

then the next-in-line (B) takes over and starts relaying.

Relaying is done via the RELAY protocol added to the top of the stack. The bridge is configured

with the bridge_props property, e.g. bridge_props="/home/bela/tcp.xml". This creates a JChannel

inside RELAY.

Note that property "site" must be set in both subclusters. In the example above, we could set

site="nyc" for the NYC subcluster and site="sfo" for the SFO ubcluster.

The design is described in detail in JGroups/doc/design/RELAY.txt (part of the source distribution).

In a nutshell, multicast messages received in a local cluster are wrapped and forwarded to the

remote cluster by a relay (= the coordinator of a local cluster). When a remote cluster receives

such a message, it is unwrapped and put onto the local cluster.

JGroups uses subclasses of UUID (PayloadUUID) to ship the site name with an address. When

we see an address with site="nyc" on the SFO side, then RELAY will forward the message to the

SFO subcluster, and vice versa. When C multicasts a message in the NYC cluster, A will forward it

to D, which will re-broadcast the message on its local cluster, with the sender being D. This means

that the sender of the local broadcast will appear as D (so all retransmit requests got to D), but the

original sender C is preserved in the header. At the RELAY protocol, the sender will be replaced

with the original sender (C) having site="nyc". When node F wants to reply to the sender of the

multicast, the destination of the message will be C, which is intercepted by the RELAY protocol

and forwarded to the current relay (D). D then picks the correct destination (C) and sends the

message to the remote cluster, where A makes sure C (the original sender) receives it.

An important design goal of RELAY is to be able to have completely autonomous clusters, so

NYC doesn't for example have to block waiting for credits from SFO, or a node in the SFO cluster

doesn't have to ask a node in NYC for retransmission of a missing message.

5.10.1. Views

RELAY presents a global view to the application, e.g. a view received by nodes could be

{D,E,F,A,B,C}. This view is the same on all nodes, and a global view is generated by taking the two

local views, e.g. A|5 {A,B,C} and D|2 {D,E,F}, comparing the coordinators' addresses (the UUIDs

for A and D) and concatenating the views into a list. So if D's UUID is greater than A's UUID, we

first add D's members into the global view ({D,E,F}), and then A's members.

Therefore, we'll always see all of A's members, followed by all of D's members, or the other way

round.

Chapter 5. Advanced Concepts

90

To see which nodes are local and which ones remote, we can iterate through the addresses

(PayloadUUID) and use the site (PayloadUUID.getPayload()) name to for example differentiate

between "nyc" and "sfo".

5.10.2. Configuration

To setup a relay, we need essentially 3 XML configuration files: 2 to configure the local clusters

and 1 for the bridge.

To configure the first local cluster, we can copy udp.xml from the JGroups distribution and add

RELAY on top of it: <RELAY bridge_props="/home/bela/tcp.xml" />. Let's say we call this config

relay.xml.

The second local cluster can be configured by copying relay.xml to relay2.xml. Then change the

mcast_addr and/or mcast_port, so we actually have 2 different cluster in case we run instances

of both clusters in the same network. Of course, if the nodes of one cluster are run in a different

network from the nodes of the other cluster, and they cannot talk to each other, then we can simply

use the same configuration.

The 'site' property needs to be configured in relay.xml and relay2.xml, and it has to be different.

For example, relay.xml could use site="nyc" and relay2.xml could use site="sfo".

The bridge is configured by taking the stock tcp.xml and making sure both local clusters can see

each other through TCP.

5.11. Relaying between multiple sites (RELAY2)

Note

RELAY2 was added to JGroups in the 3.2 release.

Similar to Section 5.10, “Bridging between remote clusters”, RELAY2 provides clustering between

sites. However, the differences to RELAY are:

• Clustering can be done between multiple sites. Currently (3.2), sites have to be directly

reachable. In 3.3, hierarchical setups of sites will be implemented.

• Virtual (global) views are not provided anymore. If we have clusters SFO={A,B,C} and

LON={X,Y,Z}, then both clusters are completed autonomous and don't know about each other's

existence.

• Not only unicasts, but also multicasts can be routed between sites (configurable).

To use RELAY2, it has to be placed at the top of the configuration, e.g.:

Relaying between multiple sites (RELAY2)

91

<relay.RELAY2 site="LON" config="/home/bela/relay2.xml"

 relay_multicasts="true" />

<FORWARD_TO_COORD />

The above configuration has a site name which will be used to route messages between sites. To

do that, addresses contain the site-ID, so we always know which site the address is from. E.g. an

address A1:LON in the SFO site is not local, but will be routed to the remote site SFO.

The FORWARD_TO_COORD protocol is optional, but since it guarantees reliable message

forwarding to the local site master, it is recommended. It makes sure that - if a local coordinator

(site master) crashes or leaves while a message is being forwarded to it - the message will be

forwarded to the next coordinator once elected.

The relay_multicasts property determines whether or not multicast messages (with dest = null)

are relayed to the other sites, or not. When we have a site LON, connected to sites SFO and NYC,

if a multicast message is sent in site LON, and relay_multicasts is true, then all members of sites

SFO and NYC will receive the message.

The config property points to an XML file which defines the setup of the sites, e.g.:

<RelayConfiguration xmlns="urn:jgroups:relay:1.0">

 <sites>

 <site name="lon" id="0">

 <bridges>

 <bridge config="/home/bela/global.xml" name="global"/>

 </bridges>

 </site>

 <site name="nyc" id="1">

 <bridges>

 <bridge config="/home/bela/global.xml" name="global"/>

 </bridges>

 </site>

 <site name="sfo" id="2">

 <bridges>

 <bridge name="global" config="/home/bela/global.xml"/>

 </bridges>

 </site>

 </sites>

</RelayConfiguration>

Chapter 5. Advanced Concepts

92

Note

The configuration as shown above might change in 3.3, when hierarchical routing

will be added.

This defines 3 sites LON, SFO and NYC. All the sites are connected to a global cluster (bus)

"global" (defined by /home/bela/global.xml). All inter-site traffic will be sent via this global cluster

(which has to be accessible by all of the sites). Intra-site traffic is sent via the cluster that's defined

by the configuration of which RELAY2 is the top protocol.

The above configuration is not mandatory, ie. instead of a global cluster, we could define separate

clusters between LON and SFO and LON and NYC. However, in such a setup, due to lack of

hierarchical routing, NYC and SFO wouldn't be able to send each other messages; only LON

would be able to send message to SFO and NYC.

5.11.1. Relaying of multicasts

If relay_multicasts is true then any multicast received by the site master of a site (ie. the coordinator

of the local cluster, responsible for relaying of unicasts and multicasts) will relay the multicast to

all connected sites. This means that - beyond setting relay_multicasts - nothing has to be done

in order to relay multicasts across all sites.

A recipient of a multicast message which originated from a different site will see that the sender's

address is not a UUID, but a subclass (SiteUUID) which is the UUID plus the site suffix, e.g.

A1:SFO. Since a SiteUUID is a subclass of a UUID, both types can be mixed and matched, placed

into hashmaps or lists, and they implement compareTo() and equals() correctly.

When a reply is to be sent to the originator of the multicast message, Message.getSrc() provides

the target address for the unicast response message. This is also a SiteUUID, but the sender of

the response neither has to know nor take any special action to send the response, as JGroups

takes care of routing the response back to the original sender.

5.11.2. Relaying of unicasts

As discussed above, relaying of unicasts is done transparently. However, if we don't have a target

address (e.g. as a result of reception of a multicast), there is a special address SiteMaster which

identifies the site master; the coordinator of a local cluster responsible for relaying of messages.

Class SiteMaster is created with the name of a site, e.g. new SiteMaster("LON"). When a unicast

with destination SiteMaster("LON") is sent, then we relay the message to the current site master

of LON. If the site master changes, messages will get relayed to a different node, which took over

the role of the site master from the old (perhaps crashed) site master.

Sometimes only certain members of a site should become site masters; e.g. the more powerful

boxes (as routing needs some additional CPU power), or multi-homed hosts which are connected

to the external network (over which the sites are connected with each other).

Invoking RPCs across sites

93

To do this, RELAY2 can generate special addresses which contain the knowledge about

whether a member should be skipped when selecting a site master from a view, or

not. If can_become_site_master is set to false in RELAY2, then the selection process

will skip that member. However, if all members in a given view are marked with

can_become_site_master=false, then the first member of the view will get picked.

When we have all members in a view marked with can_become_site_master=false, e.g. {B,C,D},

then B is the site master. If we now start a member A with can_become_site_master=true, then

B will stop being the site master and A will become the new site master.

5.11.3. Invoking RPCs across sites

Invoking RPCs across sites is more or less transparent, except for the case when we cannot

reach a member of a remote site. If we want to invoke method foo() in A1, A2 (local) and

SiteMaster("SFO"), we could write the following code:

List<Address> dests=new ArrayList<Address>(view.getMembers());

dests.add(new SiteMaster("SFO"));

RspList<Object> rsps;

rsps=disp.callRemoteMethods(dests, call,

 new RequestOptions(ResponseMode.GET_ALL, 5000).setAnycasting(true));

for(Rsp rsp: rsps.values()) {

 if(rsp.wasUnreachable())

 System.out.println("<< unreachable: " + rsp.getSender());

 else

 System.out.println("<< " + rsp.getValue() + " from " + rsp.getSender());

}

First, we add the members (A1 and A2) of the current (local) view to the destination set. Then we

add the special address SiteMaster("SFO") which acts as a placeholder for the current coordinator

of the SFO site.

Next, we invoke the call with dests as target set and block until responses from all A1, A2 and

SiteMaster("SFO") have been received, or until 5 seconds have elapsed.

Next, we check the response list. And here comes the bit that's new in 3.2: if a site is unreachable,

a Rsp has an additional field "unreachable", which means that we could not reach the site master

of SFO for example. Note that this is not necessarily an error, as a site maybe currently down, but

the caller now has the option of checking on this new status field.

5.11.4. Configuration

Let's configure an example which consists of 3 sites SFO, LON and NYC and 2 members in each

site. First we define the configuration for the local cluster (site) SFO. To do this, we could for

Chapter 5. Advanced Concepts

94

example copy udp.xml from the JGroups distro (and name it sfo.xml) and add RELAY2 to the top

(as shown above). RELAY2's config property points to relay2.xml as shown above as well. The

relay2.xml file defines a global cluster with global.xml, which uses TCP and MPING for the global

cluster (copy for example tcp.xml to create global.xml)

Now copy sfo.xml to lon.xml and nyc.xml. The RELAY2 configuration stays the same for lon.xml

and nyc.xml, but the multicast address and/or multicast port has to be changed in order to create 3

separate local clusters. Therefore, modify both lon.xml and nyc.xml and change mcast_port and /

or mcast_addr in UDP to use separate values, so the clusters don't interfere with each other.

To test whether we have 3 different clusters, start the Draw application (shipped with JGroups):

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./sfo.xml

 -name sfo1

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./sfo.xml

 -name sfo2

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./lon.xml

 -name lon1

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./lon.xml

 -name lon2

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./nyc.xml

 -name nyc1

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props ./nyc.xml

 -name nyc2

We should now have 3 local clusters (= sites) of 2 instances each. When RELAY2.relay_multicasts

is true, if you draw in one instance, we should see the drawing in all 6 instances. This means that

relaying of multicasting between sites works. If this doesn't work, run a few Draw instances on

global.xml, to see if they find each other.

Note that the first member of each cluster always joins the global cluster (defined by global.xml)

too. This is necessary to relay messages between sites.

To test unicasts between sites, you can use the org.jgroups.demos.RelayDemoRpc program: start

it as follows:

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.RelayDemoRpc -

props ./sfo.xml -name sfo1

Start 2 instances in 3 sites and then use

mcast lon sfo nyc

to invoke RPCs on all local members and site masters SFO, NYC and LON. If one of the sites is

down, you'll get a message stating the site is unreachable.

Daisychaining

95

5.12. Daisychaining

Daisychaining refers to a way of disseminating messages sent to the entire cluster.

The idea behind it is that it is inefficient to broadcast a message in clusters where IP multicasting

is not available. For example, if we only have TCP available (as is the case in most clouds today),

then we have to send a broadcast (or group) message N-1 times. If we want to broadcast M to a

cluster of 10, we send the same message 9 times.

Example: if we have {A,B,C,D,E,F}, and A broadcasts M, then it sends it to B, then to C, then to

D etc. If we have a 1 GB switch, and M is 1GB, then sending a broadcast to 9 members takes 9

seconds, even if we parallelize the sending of M. This is due to the fact that the link to the switch

only sustains 1GB / sec. (Note that I'm conveniently ignoring the fact that the switch will start

dropping packets if it is overloaded, causing TCP to retransmit, slowing things down)...

Let's introduce the concept of a round. A round is the time it takes to send or receive a message.

In the above example, a round takes 1 second if we send 1 GB messages. In the existing N-1

approach, it takes X * (N-1) rounds to send X messages to a cluster of N nodes. So to broadcast

10 messages a the cluster of 10, it takes 90 rounds.

Enter DAISYCHAIN.

The idea is that, instead of sending a message to N-1 members, we only send it to our neighbor,

which forwards it to its neighbor, and so on. For example, in {A,B,C,D,E}, D would broadcast a

message by forwarding it to E, E forwards it to A, A to B, B to C and C to D. We use a time-to-

live field, which gets decremented on every forward, and a message gets discarded when the

time-to-live is 0.

The advantage is that, instead of taxing the link between a member and the switch to send N-1

messages, we distribute the traffic more evenly across the links between the nodes and the switch.

Let's take a look at an example, where A broadcasts messages m1 and m2 in cluster {A,B,C,D},

'-->' means sending:

5.12.1. Traditional N-1 approach

• Round 1: A(m1) --> B

• Round 2: A(m1) --> C

• Round 3: A(m1) --> D

• Round 4: A(m2) --> B

• Round 5: A(m2) --> C

• Round 6: A(m2) --> D

It takes 6 rounds to broadcast m1 and m2 to the cluster.

Chapter 5. Advanced Concepts

96

5.12.2. Daisychaining approach

• Round 1: A(m1) --> B

• Round 2: A(m2) --> B || B(m1) --> C

• Round 3: B(m2) --> C || C(m1) --> D

• Round 4: C(m2) --> D

In round 1, A send m1 to B.

In round 2, A sends m2 to B, but B also forwards m1 (received in round 1) to C.

In round 3, A is done. B forwards m2 to C and C forwards m1 to D (in parallel, denoted by '||').

In round 4, C forwards m2 to D.

5.12.3. Switch usage

Let's take a look at this in terms of switch usage: in the N-1 approach, A can only send 125MB/

sec, no matter how many members there are in the cluster, so it is constrained by the link capacity

to the switch. (Note that A can also receive 125MB/sec in parallel with today's full duplex links).

So the link between A and the switch gets hot.

In the daisychaining approach, link usage is more even: if we look for example at round 2, A

sending to B and B sending to C uses 2 different links, so there are no constraints regarding

capacity of a link. The same goes for B sending to C and C sending to D.

In terms of rounds, the daisy chaining approach uses X + (N-2) rounds, so for a cluster size of 10

and broadcasting 10 messages, it requires only 18 rounds, compared to 90 for the N-1 approach !

5.12.4. Performance

To measure performance of DAISYCHAIN, a performance test (test.Perf) was run, with 4 nodes

connected to a 1 GB switch; and every node sending 1 million 8K messages, for a total of 32GB

received by every node. The config used was tcp.xml.

The N-1 approach yielded a throughput of 73 MB/node/sec, and the daisy chaining approach

107MB/node/sec !

5.12.5. Configuration

DAISYCHAIN can be placed directly on top of the transport, regardless of whether it is UDP or

TCP, e.g.

<TCP .../>

Tagging messages with flags

97

<DAISYCHAIN .../>

<TCPPING .../>

5.13. Tagging messages with flags

A message can be tagged with a selection of flags, which alter the way certain protocols treat the

message. This is done as follows:

Message msg=new Message();

msg.setFlag(Message.OOB, Message.NO_FC);

Here we tag the message to be OOB (out of band) and to bypass flow control.

The advantage of tagging messages is that we don't need to change the configuration, but instead

can override it on a per-message basis.

The available flags are:

Message.OOB

This tags a message as out-of-band, which will get it processed by the out-of-band thread pool

at the receiver's side. Note that an OOB message does not provide any ordering guarantees,

although OOB messages are reliable (no loss) and are delivered only once. See Section 5.4.5,

“Out-of-band messages” for details.

Message.DONT_BUNDLE

This flag causes the transport not to bundle the message, but to send it immediately.

See Section 5.3.1.1, “Message bundling and performance” for a discussion of the

DONT_BUNDLE flag with respect to performance of blocking RPCs.

Message.NO_FC

This flag bypasses any flow control protocol (see Section 7.9, “Flow control”) for a discussion

of flow control protocols.

Message.SCOPED

This flag is set automatically when Message.setScope() is called. See Section 5.4.4,

“Scopes: concurrent message delivery for messages from the same sender” for a discussion

on scopes.

Message.NO_RELIABILITY

When sending unicast or multicast messages, some protocols (UNICAST, NAKACK) add

sequence numbers to the messages in order to (1) deliver them reliably and (2) in order.

Chapter 5. Advanced Concepts

98

If we don't want reliability, we can tag the message with flag NO_RELIABILITY. This means

that a message tagged with this flag may not be received, may be received more than once,

or may be received out of order.

A message tagged with NO_RELIABILITY will simply bypass reliable protocols such as

UNICAST and NAKACK.

For example, if we send multicast message M1, M2 (NO_RELIABILITY), M3 and M4, and the

starting sequence number is #25, then M1 will have seqno #25, M3 will have #26 and M4 will

have #27. We can see that we don't allocate a seqno for M2 here.

Message.NO_TOTAL_ORDER

If we use a total order configuration with SEQUENCER (Section 7.11.1, “SEQUENCER”), then

we can bypass SEQUENCER (if we don't need total order for a given message) by tagging

the message with NO_TOTAL_ORDER.

Message.NO_RELAY

If we use RELAY (see Section 5.10, “Bridging between remote clusters”) and don't want a

message to be relayed to the other site(s), then we can tag the message with NO_RELAY.

Message.RSVP

When this flag is set, a message send will block until the receiver (unicast) or receivers

(multicast) have acked reception of the message, or until a timeout occurs. See

Section 3.8.8.2, “Synchronous messages” for details.

Message.DONT_LOOPBACK

If this flag is set and the message is a multicast message (dest == null), then the transport

by default (1) multicasts the message, (2) loops it back up the stack (on a separate thread)

and (3) discards the multicast when received.

When DONT_LOOPBACK is set, the message will be multicast, but it will not be looped back

up the stack. This is useful for example when the sender doesn't want to receive its own

multicast. Contrary to JChannel.setDiscardOwnMessages(), this flag can be set per message

and the processing is done at the transport level rather than the JChannel level.

An example is the Discovery protocol: when sending a discovery request, the sender is only

interested in responses from other members and therefore doesn't need to receive its own

discovery multicast request.

Note that this is a transient flag, so Message.isTransientFlagSet(..) has to be used instead

of Message.isFlagSet(..

Note

Note that DONT_LOOPBACK does not make any sense for unicast messages,

as the sender of a message sent to itself will never receive it.

Performance tests

99

5.14. Performance tests

There are a number of performance tests shipped with JGroups. The section below discusses

MPerf, which is a replacement for (static) perf.Test. This change was done in 3.1.

5.14.1. MPerf

MPerf is a test which measures multicast performance. This doesn't mean IP multicast

performance, but point-to-multipoint performance. Point-to-multipoint means that we measure

performance of one-to-many messages; in other words, messages sent to all cluster members.

Compared to the old perf.Test, MPerf is dynamic; it doesn't need a setup file to define the number

of senders, number of messages to be sent and message size. Instead, all the configuration

needed by an instance of MPerf is an XML stack configuration, and configuration changes done

in one member are automatically broadcast to all other members.

MPerf can be started as follows:

java -cp $CLASSPATH -Djava.net.preferIPv4Stack=true

 org.jgroups.tests.perf.MPerf -props ./fast.xml

This assumes that we're using IPv4 addresses (otherwise IPv6 addresses are used) and the

JGroups JAR on CLASSPATH.

A screen shot of MPerf looks like this (could be different, depending on the JGroups version):

[linux]/home/bela$ mperf.sh -props ./fast.xml -name B

----------------------- MPerf -----------------------

Date: Mon Dec 12 15:33:21 CET 2011

Run by: bela

JGroups version: 3.1.0.Alpha1

GMS: address=B, cluster=mperf, physical address=192.168.1.5:46614

** [A|9] [A, B]

num_msgs=1000000

msg_size=1000

num_threads=1

[1] Send [2] View

[3] Set num msgs (1000000) [4] Set msg size (1KB) [5] Set threads (1)

[6] New config (./fast.xml)

[x] Exit this [X] Exit all

Chapter 5. Advanced Concepts

100

We're starting MPerf with -props ./fast.xml and -name B. The -props option points to a JGroups

configuration file, and -name gives the member the name "B".

MPerf can then be run by pressing [1]. In this case, every member in the cluster (in the example,

we have members A and B) will send 1 million 1K messages. Once all messages have been

received, MPerf will write a summary of the performance results to stdout:

[1] Send [2] View

[3] Set num msgs (1000000) [4] Set msg size (1KB) [5] Set threads (1)

[6] New config (./fast.xml)

[x] Exit this [X] Exit all

1

-- sending 1000000 msgs

++ sent 100000

-- received 200000 msgs (1410 ms, 141843.97 msgs/sec, 141.84MB/sec)

++ sent 200000

-- received 400000 msgs (1326 ms, 150829.56 msgs/sec, 150.83MB/sec)

++ sent 300000

-- received 600000 msgs (1383 ms, 144613.16 msgs/sec, 144.61MB/sec)

++ sent 400000

-- received 800000 msgs (1405 ms, 142348.75 msgs/sec, 142.35MB/sec)

++ sent 500000

-- received 1000000 msgs (1343 ms, 148920.33 msgs/sec, 148.92MB/sec)

++ sent 600000

-- received 1200000 msgs (1700 ms, 117647.06 msgs/sec, 117.65MB/sec)

++ sent 700000

-- received 1400000 msgs (1399 ms, 142959.26 msgs/sec, 142.96MB/sec)

++ sent 800000

-- received 1600000 msgs (1359 ms, 147167.03 msgs/sec, 147.17MB/sec)

++ sent 900000

-- received 1800000 msgs (1689 ms, 118413.26 msgs/sec, 118.41MB/sec)

++ sent 1000000

-- received 2000000 msgs (1519 ms, 131665.57 msgs/sec, 131.67MB/sec)

Results:

B: 2000000 msgs, 2GB received, msgs/sec=137608.37, throughput=137.61MB

A: 2000000 msgs, 2GB received, msgs/sec=137959.58, throughput=137.96MB

===

 Avg/node: 2000000 msgs, 2GB received, msgs/sec=137788.49,

 throughput=137.79MB

 Avg/cluster: 4000000 msgs, 4GB received, msgs/sec=275576.99,

 throughput=275.58MB

==

Ergonomics

101

[1] Send [2] View

[3] Set num msgs (1000000) [4] Set msg size (1KB) [5] Set threads (1) [6]

 New config (./fast.xml)

[x] Exit this [X] Exit all

In the sample run above, we see member B's screen. B sends 1 million messages and waits for its

1 million and the 1 million messages from B to be received before it dumps some stats to stdout.

The stats include the number of messages and bytes received, the time, the message rate and

throughput averaged over the 2 members. It also shows the aggregated performance over the

entire cluster.

In the sample run above, we got an average 137MB of data per member per second, and an

aggregated 275MB per second for the entire cluster (A and B in this case).

Parameters such as the number of messages to be sent, the message size and the number

of threads to be used to send the messages can be configured by pressing the corresponding

numbers. After pressing return, the change will be broadcast to all cluster members, so that we

don't have to go to each member and apply the same change. Also, new members started, will

fetch the current configuration and apply it.

For example, if we set the message size in A to 2000 bytes, then the change would be sent to B,

which would apply it as well. If we started a third member C, it would also have a configuration

with a message size of 2000.

Another feature is the ability to restart all cluster members with a new configuration. For example,

if we modified ./fast.xml, we could select [6] to make all cluster members disconnect and close

their existing channels and start a new channel based on the modified fast.xml configuration.

The new configuration file doesn't even have to be accessible on all cluster members; only on the

member which makes the change. The file contents will be read by that member, converted into a

byte buffer and shipped to all cluster members, where the new channel will then be created with

the byte buffer (converted into an input stream) as config.

Being able to dynamically change the test parameters and the JGroups configuration makes MPerf

suited to be run in larger clusters; unless a new JGroups version is installed, MPerf will never

have to be restarted manually.

5.15. Ergonomics

Ergonomics is similar to the dynamic setting of optimal values for the JVM, e.g. garbage collection,

memory sizes etc. In JGroups, ergonomics means that we try to dynamically determine and

set optimal values for protocol properties. Examples are thread pool size, flow control credits,

heartbeat frequency and so on.

There is an ergonomics property which can be enabled or disabled for every protocol. The default

is true. To disable it, set it to false, e.g.:

Chapter 5. Advanced Concepts

102

<UDP... />

<PING ergonomics="false"/>

Here we leave ergonomics enabled for UDP (the default is true), but disable it for PING.

Ergonomics is work-in-progress, and will be implemented over multiple releases.

5.16. Supervising a running stack

SUPERVISOR (Section 7.14.13, “SUPERVISOR”) provides a rule based fault detection and

correction protocol. It allows for rules to be installed, which are periodically invoked. When

invoked, a condition can be checked and corrective action can be taken to fix the problem.

Essentially, SUPERVISOR acts like a human administrator, except that condition checking and

action triggering is done automatically.

An example of a rule is org.jgroups.protocols.rules.CheckFDMonitor: invoked periodically, it

checks if the monitor task in FD is running when the membership is 2 or more and - if not - restarts

it. The sections below show how to write the rule and how to invoke it.

All rules to be installed in SUPERVISOR are listed in an XML file, e.g. rules.xml:

<rules xmlns="urn:jgroups:rules:1.0">

 <rule name="rule1" class="org.jgroups.protocols.rules.CheckFDMonitorRule"

 interval="1000"/>

</rules>

There is only one rule "rule1" present, which is run every second. The name of the

class implementing the rule is "org.jgroups.protocols.rules.CheckFDMonitorRule", and its

implementation is:

public class CheckFDMonitor extends Rule {

 protected FD fd;

 public String name() {return "sample";}

 public String description() {

 return "Starts FD.Monitor if membership > 1 and monitor isn't running";

 }

Supervising a running stack

103

 public void init() {

 super.init();

 fd=(FD)sv.getProtocolStack().findProtocol(FD.class);

 if(fd == null) {

 log.info("FD was not found, uninstalling myself (sample)");

 sv.uninstallRule("sample");

 }

 }

 public boolean eval() {

 return sv.getView() != null && sv.getView().size() > 1

 && !fd.isMonitorRunning();

 }

 public String condition() {

 View view=sv.getView();

 return "Membership is " + (view != null? view.size() : "n/a") +

 ", FD.Monitor running=" + fd.isMonitorRunning();

 }

 public void trigger() throws Throwable {

 System.out.println(sv.getLocalAddress() + ": starting failure detection");

 fd.startFailureDetection();

 }

}

CheckFDMonitor extends abstract class Rule which sets a reference to SUPERVISOR and the

log when the rule has been installed.

Method name() needs to return a unique name by which the rule can be uninstalled later if

necessary.

Description() should provide a meaningful description (used by JMX).

In init(), a reference to FD is set by getting the protocol stack from the SUPERVISOR (sv). If not

found, e.g. because there is no FD protocol present in a given stack, the rule uninstalls itself.

Method eval() is called every second. It checks that the monitor task in FD is running (when the

membership is 2 or more) and, if not, returns true. In that case, method trigger() will get called by

the code in the Rule superclass and it simply restarts the stopped monitor task.

Note that rules can be installed and uninstalled dynamically at runtime, e.g. via probe.sh:

probe.sh op=SUPERVISOR.installRule["myrule",

 1000,"org.jgroups.protocols.rules.CheckFDMonitor"]

Chapter 5. Advanced Concepts

104

installs rule CheckFDMonitor as "myrule" into the running system, and this rule will be run every

1000 ms.

probe.sh op=SUPERVISOR.uninstallRule["myrule"]

uninstalls "myrule" again.

probe.sh op=SUPERVISOR.dumpRules

dumps a list of currently installed rules to stdout.

5.17. Probe

Probe is the Swiss Army Knife for JGroups; it allows to fetch information about the members

running in a cluster, get and set properties of the various protocols, and invoke methods in all

cluster members.

Probe can even insert protocols into running cluster members, or remove/replace existing

protocols. Note that this doesn't make sense though with stateful protocols such as NAKACK. But

this feature is helpful, it could be used for example to insert a diagnostics or stats protocol into a

running system. When done, the protocol can be removed again.

Probe is a script (probe.sh in the bin directory of the source distribution) that can be invoked on

any of the hosts in same network in which a cluster is running.

Note

Probe currently requires IP multicasting to be enabled in a network, in order to

discover the cluster members in a network. It can be used with TCP as transport,

but still requires multicasting.

The probe.sh script essentially calls org.jgroups.tests.Probe which is part of the JGroups JAR.

The way probe works is that every stack has an additional multicast socket that by default listens on

224.0.75.75:7500 for diagnostics requests from probe. The configuration is located in the transport

protocol (e.g. UDP), and consists of the following properties:

Table 5.3. Properties for diagnostics / probe

Name Description

enable_diagnostics Whether or not to enable diagnostics (default:

true). When enabled, this will create a

Probe

105

Name Description

MulticastSocket and we have one additional

thread listening for probe requests. When

disabled, we'll have neither the thread nor the

socket created.

diagnostics_addr The multicast address which the

MulticastSocket should join. The default

is "224.0.75.75" for IPv4 and

"ff0e::0:75:75" for IPv6.

diagnostics_port The port on which the MulticastSocket should

listen. The default is 7500.

Probe is extensible; by implementing a ProbeHandler and registering it with the transport

(TP.registerProbeHandler()), any protocol, or even applications can register functionality to

be invoked via probe. Refer to the javadoc for details.

To get information about the cluster members running in the local network, we can use the

following probe command (note that probe could also be invoked as java -classpath $CP

org.jgroups.tests.Probe $*):

[linux]/home/bela/JGroups$ probe.sh

-- send probe on /224.0.75.75:7500

#1 (149 bytes):

local_addr=A [1a1f543c-2332-843b-b523-8d7653874de7]

cluster=DrawGroupDemo

view=[A|1] [A, B]

physical_addr=192.168.1.5:43283

version=3.0.0.Beta1

#2 (149 bytes):

local_addr=B [88588976-5416-b054-ede9-0bf8d4b56c02]

cluster=DrawGroupDemo

view=[A|1] [A, B]

physical_addr=192.168.1.5:35841

version=3.0.0.Beta1

2 responses (2 matches, 0 non matches)

[linux]/home/bela/JGroups$

Chapter 5. Advanced Concepts

106

This gets us 2 responses, from A and B. "A" and "B" are the logical names, but we also see the

UUIDs. They're both in the same cluster ("DrawGroupDemo") and both have the same view ([A|

1] [A, B]). The physical address and the version of both members is also shown.

Note that probe.sh -help lists the command line options.

To fetch all of the JMX information from all protocols, we can invoke

probe jmx

However, this dumps all of the JMX attributes from all protocols of all cluster members, so make

sure to pipe the output into a file and awk and sed it for legibility !

However, we can also JMX information from a specific protocol, e.g. FRAG2 (slightly edited>:

[linux]/home/bela$ probe.sh jmx=FRAG2

-- send probe on /224.0.75.75:7500

#1 (318 bytes):

local_addr=B [88588976-5416-b054-ede9-0bf8d4b56c02]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:35841

jmx=FRAG2={id=5, level=off, num_received_msgs=131, frag_size=60000,

 num_sent_msgs=54, stats=true, num_sent_frags=0,

 name=FRAG2, ergonomics=true, num_received_frags=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

#2 (318 bytes):

local_addr=A [1a1f543c-2332-843b-b523-8d7653874de7]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:43283

jmx=FRAG2={id=5, level=off, num_received_msgs=131, frag_size=60000,

 num_sent_msgs=77, stats=true, num_sent_frags=0,

 name=FRAG2, ergonomics=true, num_received_frags=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

2 responses (2 matches, 0 non matches)

[linux]/home/bela$

Probe

107

We can also get information about specific properties in a given protocol:

[linux]/home/bela$ probe.sh jmx=NAKACK.xmit

-- send probe on /224.0.75.75:7500

#1 (443 bytes):

local_addr=A [1a1f543c-2332-843b-b523-8d7653874de7]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:43283

jmx=NAKACK={xmit_table_max_compaction_time=600000, xmit_history_max_size=50,

 xmit_rsps_sent=0, xmit_reqs_received=0, xmit_table_num_rows=5,

 xmit_reqs_sent=0, xmit_table_resize_factor=1.2,

 xmit_from_random_member=false, xmit_table_size=78,

 xmit_table_msgs_per_row=10000, xmit_rsps_received=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

#2 (443 bytes):

local_addr=B [88588976-5416-b054-ede9-0bf8d4b56c02]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:35841

jmx=NAKACK={xmit_table_max_compaction_time=600000, xmit_history_max_size=50,

 xmit_rsps_sent=0, xmit_reqs_received=0, xmit_table_num_rows=5,

 xmit_reqs_sent=0, xmit_table_resize_factor=1.2,

 xmit_from_random_member=false, xmit_table_size=54,

 xmit_table_msgs_per_row=10000, xmit_rsps_received=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

2 responses (2 matches, 0 non matches)

[linux]/home/bela$

This returns all JMX attributes that start with "xmit" in all NAKACK protocols of all cluster

members. We can also pass a list of attributes:

Chapter 5. Advanced Concepts

108

[linux]/home/bela$ probe.sh jmx=NAKACK.missing,xmit

-- send probe on /224.0.75.75:7500

#1 (468 bytes):

local_addr=A [1a1f543c-2332-843b-b523-8d7653874de7]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:43283

jmx=NAKACK={xmit_table_max_compaction_time=600000, xmit_history_max_size=50,

 xmit_rsps_sent=0, xmit_reqs_received=0, xmit_table_num_rows=5,

 xmit_reqs_sent=0, xmit_table_resize_factor=1.2,

 xmit_from_random_member=false, xmit_table_size=78,

 missing_msgs_received=0, xmit_table_msgs_per_row=10000,

 xmit_rsps_received=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

#2 (468 bytes):

local_addr=B [88588976-5416-b054-ede9-0bf8d4b56c02]

cluster=DrawGroupDemo

physical_addr=192.168.1.5:35841

jmx=NAKACK={xmit_table_max_compaction_time=600000, xmit_history_max_size=50,

 xmit_rsps_sent=0, xmit_reqs_received=0, xmit_table_num_rows=5,

 xmit_reqs_sent=0, xmit_table_resize_factor=1.2,

 xmit_from_random_member=false, xmit_table_size=54,

 missing_msgs_received=0, xmit_table_msgs_per_row=10000,

 xmit_rsps_received=0}

view=[A|1] [A, B]

version=3.0.0.Beta1

2 responses (2 matches, 0 non matches)

[linux]/home/bela$

This returns all attributes of NAKACK that start with "xmit" or "missing".

To invoke an operation, e.g. to set the logging level in all UDP protocols from "warn" to "trace", we

can use probe.sh op=UPD.setLevel["trace"]. This raises the logging level in all UDP protocols

of all cluster members, which is useful to diagnose a running system.

Determining the coordinator and controlling view generation

109

Operation invocation uses reflection, so any method defined in any protocol can be invoked. This

is a powerful tool to get diagnostics information from a running cluster.

For further information, refer to the command line options of probe (probe.sh -h).

5.18. Determining the coordinator and controlling view

generation

In 3.4 the membership change algorithm was made pluggable; now application code can be called

to determine how a new view is created. This is done for both regular views, e.g. caused by joins,

leaves or crashes, and for merge views.

The tenet that the coordinator is always the first member of a view has not changed, but because

the view generation can be done by application code, that code essentially also controls which

member should be the coordinator.

This can be used to for example pin the coordinatorship to only certain 'beefy' servers. Another

example is to make sure that only one of the previous coordinators becomes the new coordinator

after a merge. This reduces the frequency with which the coordinator moves around and thus

increases stability for singleton services (services which are started only on one node in a given

cluster).

To do this, interface MembershipChangePolicy has to be implemented:

public interface MembershipChangePolicy {

 List<Address> getNewMembership(final Collection<Address> current_members,

 final Collection<Address> joiners,

 final Collection<Address> leavers,

 final Collection<Address> suspects);

 List<Address> getNewMembership(final Collection<Collection<Address>> subviews);

}

The first method is called whenever a regular view needs to be created. Parameter

current_members is a list of the current members in the view. Joiners is the list of new members,

leavers the members which want to leave the cluster and suspects the members which were

suspected to have crashed.

The default policy adds the joiners to the end of the current members and removes suspected

and leaving members.

The second method accepts a list of membership lists; each list represents a subview that needs

to get merged into a new MergeView. For example, we could have {A,B,C}, {M,N,O,P} and

{X,Y,Z}. A, M and X are the respective coordinators of the subviews and the task of the code

is to determine the single coordinator which will be coordinator of the merged view. The default

Chapter 5. Advanced Concepts

110

implementation adds all subview coordinators to a sorted set, takes the first (say M), adds it

to the resulting list and the adds the subviews in turn. This could result in a MergeView like

{M,A,B,C,N,O,P,X,Y,Z}.

Ordering and duplicate elements

In both regular and merge views, it is important that there are no duplicate

members. It is entirely possible to get overlapping subviews in the case of a merge,

for instance: {A,B,C}, {C,D} and {C,D}. This cannot result in C or D being present

in the resulting merged view multiple times.

A MembershipChangePolicy can be set in GMS via property membership_change_policy, which

accepts the fully qualified classname of the implementation of MembershipChangePolicy. There

is also a setter, setMembershipChangePolicy() which can be used to set the change policy

programmatically.

The following example shows how to pin coordinatorship to a certain subset of nodes in a cluster.

Beefy nodes need to be marked as such, and this is done by using a special address, generated

by an address generator (see Section 3.8.3, “Generating custom addresses”) in JChannel:

if(beefy)

 channel.setAddressGenerator(new AddressGenerator() {

 public Address generateAddress() {

 return PayloadUUID.randomUUID(channel.getName(), "beefy");

 }

 });

}

First we check if the current node that's about to be started needs to be marked as beefy. This

would typically be passed to the instance via a command flag. If so, we grab the current channel

(before it is started) and set an AddressGenerator which simply creates a subclass of UUID, a

PayloadUUID.

The MembershipChangePolicy now knows if a node is beefy or not by checking if the node's

address is a PayloadUUID (versus a regular UUID).

A possible implementation of MembershipChangePolicy is shown below:

public List<Address> getNewMembership(final Collection<Address> current_members,

 final Collection<Address> joiners,

 final Collection<Address> leavers,

ForkChannels: light-weight channels to piggy-back messages over an existing channel

111

 final Collection<Address> suspects) {

 Membership retval=new Membership();

 // add the beefy nodes from the current membership first

 for(Address addr: current_members) {

 if(addr instanceof PayloadUUID)

 retval.add(addr);

 }

 // then from joiners

 for(Address addr: joiners) {

 if(addr instanceof PayloadUUID)

 retval.add(addr);

 }

 // then add all non-beefy current nodes

 retval.add(current_members);

 // finally the non-beefy joiners

 retval.add(joiners);

 retval.remove(leavers);

 retval.remove(suspects);

 return retval.getMembers();

}

The idea is simple: we want beefy servers to be the first elements of a view. However, when a new

beefy server joins, it should not become the new coordinator if the current coordinator already is

a beefy server, but add itself to the end of the beefy servers, in front of non-beefy servers.

First we create a Membership, which is an ordered list without duplicates. We then iterate through

the current membership and add the beefy servers to the list. The same is done with beefy joiners.

After that, we simply add all other current members (duplicates are suppressed by Membership)

and joiners and remove suspected and leaving members.

The effect of this is that - while there are beefy servers in a view - the oldest beefy server will

be the coordinator, then the second-oldest and so on. When no beefy servers are left, the oldest

non-beefy server will be coordinator. When a beefy server joins again, it will become coordinator,

taking the coordinatorship away from the previous non-beefy server.

5.19. ForkChannels: light-weight channels to piggy-

back messages over an existing channel

A ForkChannel is a subclass of JChannel (Section 3.8, “JChannel”) implementing only a subset of

methods (unimplemented methods throw an UnsupportedOperationException). It is a light-weight

Chapter 5. Advanced Concepts

112

channel, referencing a JChannel (main channel), and it is cheap to create a ForkChannel, connect

to a cluster, disconnect from it and close the channel.

A ForkChannel can be forked off of an existing stack (hence the name) and can add its own

protocols to the newly created fork stack. Fork stacks can be created declaratively (at main channel

creation time) or dynamically using the programmatic API.

The main use case for ForkChannels are

• No need to configure and create a separate channel, but use of an existing JChannel (e.g.

grabbed from Infinispan or WildFly) for private communication. Example: if we're running an

Infinispan cache in a cluster and need the cluster nodes to communicate with each other, then

we can create a ForkChannel to do that. The main channel used by Infinispan does not see

the communication going on over the private fork channel, and vice versa. This is because a

fork channel is given a unique ID and that ID is used to deliver messages sent by it only to fork

channels with the same ID.

• If we cannot for some reason modify the main stack's configuration, we can create a fork channel

and a corresponding fork stack and add the protocols we need to that fork stack. Example: an

application needs a fork stack with COUNTER (a distributed atomic counter) on top. To do so,

it can create a fork stack with COUNTER and a fork channel connecting to that stack, and it

will now have distributed atomic counter capabilities on its fork stack, which is not available in

the main stack.

The architecture is shown in Figure 5.7, “Architecture of a ForkChannel”.

ForkChannels: light-weight channels to piggy-back messages over an existing channel

113

Figure 5.7. Architecture of a ForkChannel

In the example, a main channel and 5 fork channels are shown. They are all running in the same

JVM.

The brown stack to the left is the main stack and it has the main channel connected to it. Not all

protocols are shown, but we've listed the GMS, MFC, FORK and FRAG2 protocols. The FORK

protocol needs to be present in the main stack, or else fork stacks can not be created.

The FORK protocol of the main stack contains 2 fork stacks: "counter" and "lock". There are fork

stack IDs and are used when creating a fork channel to determine whether fork channels share

the same fork stack, or not.

The blue stack in the middle is a fork-stack with fork stack ID "counter". It adds protocol COUNTER

to the protocols provided by the main stack. Therefore a message passing down through fork

stack "counter" will pass through protocols COUNTER, FORK, MFC and GMS.

Chapter 5. Advanced Concepts

114

Fork channels have an ID, too, e.g. "fork-ch1". The combination of fork stack ID and fork channel

ID is used to demultiplex incoming messages. For example, if fork channel 2 sends a message,

it'll pass through COUNTER and into FORK. There, a header is added to the message, containing

fork channel ID="fork-ch2" and fork stack ID="counter". Then the message passes down the main

stack, through MFC, GMS and so on.

When the message is received, it passes up the reverse order: first GMS, then MFC, then it is

received by FORK. If there is no header, FORK passes the message up the main stack, where it

passes through FRAG2 and ends up in the main channel. If a header is present, the fork stack ID

is used to find the correct fork-stack ("counter"). If no fork stack is found, a warning message is

logged. The message then passes through COUNTER. Finally, the fork channel ID ("fork-ch2") is

used to find the right fork channel and the message is passed to it.

Note that a fork stack can have more than 1 protocol; for example the yellow fork stack on the

right side has 2 protocols. A fork stack can also have 0 protocols. In that case, it is only used

to have a private channel for communication, and no additional protocols are required on top of

the main stack.

Fork channels sharing the same fork stack also share state. For example, fork channels fork-

ch1 and fork-ch2 share COUNTER, which means they will see each other's increments and

decrements of the same counter. If fork stack "lock" also had a COUNTER protocol, and fork-

ch1 anf fork-ch4 accessed a counter with the same name, they would still not see each other's

changes, as they'd have 2 different COUNTER protocols.

5.19.1. Configuration

Fork stacks can be created programmatically or declaratively. Let's take a look at the latter first.

The XML fragment below shows this:

...

<MFC max_credits="2M" min_threshold="0.4"/>

<FORK config="/home/bela/fork-stacks.xml" />

<FRAG2 frag_size="60K" />

...

FORK refers to an external file to configure its fork stacks:

<fork-stacks xmlns="fork-stacks">

 <fork-stack id="counter">

 <config>

 <COUNTER bypass_bundling="true"/>

 </config>

Creation of fork channels

115

 </fork-stack>

 <fork-stack id="lock">

 <config>

 <CENTRAL_LOCK num_backups="2"/>

 <STATS/>

 </config>

 </fork-stack>

</fork-stacks>

The file fork-stacks.xml defines 2 fork stacks: "counter" and "lock". Each fork-stack element has

an 'id' attribute which defines the fork stack's ID. Note that all fork stacks have to have unique IDs.

After the fork-stack element, the child element starting with 'config' is a regular JGroups XML

config file schema, where protocols are defined from bottom to top. For example, fork stack "lock"

defines that CENTRAL_LOCK is the first protocol on top of FORK for the given fork stack, and

STATS is on top of CENTRAL_LOCK.

When FORK is initialized, it will create the 2 fork stacks. When fork channels are created (see

the next section), they can pick one of the 2 existing fork stacks to be created over, or they can

dynamically create new fork stacks.

5.19.2. Creation of fork channels

A fork channel is created by instantiating a new ForkChannel object:

JChannel main_ch=new JChannel("/home/bela/udp.xml").name("A");

ForkChannel fork_ch=new ForkChannel(main_ch, "lock", "fork-ch4",

 new CENTRAL_LOCK(), new STATS());

fork_ch.connect("bla");

main_ch.connect("cluster");

First the main channel is created. Note that udp.xml may or may not contain FORK, but for this

example, we assume it is present.

Then the ForkChannel is created. It is passed the main channel, the fork stack ID ("lock") and the

fork channel ID ("fork-ch4"), plus a list of already instantiated protocols (CENTRAL_LOCK and

STATS). If FORK already contains a fork stack with ID="lock", the existing fork stack will be used,

or else a new one will be created with protocols CENTRAL_LOCK and STATS. Then a new fork

channel with ID="fork-ch4" will be added to the top of fork stack "lock". An exception will be thrown

if a fork channel with the same ID already exists.

Chapter 5. Advanced Concepts

116

The ForkChannel now calls connect(), but the cluster name is ignored as fork channels have the

same cluster name as they main channel the reference. The local address, name, view and state

are also the same. This means, that even though connect() was called, the fork channel is not yet

connected. As soon as the main channel is connected, the fork channel will be connected, too.

The lifetime of a fork channel is always dominated by the main channel: if the main channel is

closed, all fork channels atttached to it are in closed state, too, and trying to send a message will

throw an exception.

The example above showed the simplified constructor, which requires the FORK protocol to be

present in the stack. There's another constructor which allows for FORK to be created dynamically

if not present:

public ForkChannel(final Channel main_channel,

 String fork_stack_id, String fork_channel_id,

 boolean create_fork_if_absent,

 int position,

 Class<? extends Protocol> neighbor,

 Protocol ... protocols) throws Exception;

In addition to passing the main channel, the fork stack and channel IDs and the list of protocols,

this constructor also allows a user to create FORK in the main stack if not present. To do

so, create_fork_if_absent has to be set to true (else an exception is thrown if FORK is not

found), and the neighbor protocol (e.g. FRAG2.class) has to be defined, plus the position

(ProtocolStack.ABOVE/BELOW) relative to the neighbor protocol has to be defined as well.

The design of FORK / ForkChannel is discussed in more detail at FORK.txt [https://github.com/

belaban/JGroups/blob/master/doc/design/FORK.txt]

https://github.com/belaban/JGroups/blob/master/doc/design/FORK.txt
https://github.com/belaban/JGroups/blob/master/doc/design/FORK.txt
https://github.com/belaban/JGroups/blob/master/doc/design/FORK.txt

Chapter 6.

117

Writing protocols
This chapter discusses how to write custom protocols

6.1. Writing user defined headers

Headers are mainly used by protocols, to ship additional information around with a message,

without having to place it into the payload buffer, which is often occupied by the application already.

However, headers can also be used by an application, e.g. to add information to a message,

without having to squeeze it into the payload buffer.

A header has to extend org.jgroups.Header, have an empty public constructor and implement the

Streamable interface (writeTo() and readFrom() methods).

A header should also override size(), which returns the total number of bytes taken up in the output

stream when an instance is marshalled using Streamable. Streamable is an interface for efficient

marshalling with methods

public interface Streamable {

 /** Write the entire state of the current object (including superclasses)

 to outstream. Note that the output stream must not be closed */

 void writeTo(DataOutput out) throws IOException;

 /** Read the state of the current object (including superclasses) from

 instream. Note that the input stream must not be closed */

 void readFrom(DataInput in) throws IOException,

 IllegalAccessException,

 InstantiationException;

}

Method writeTo() needs to write all relevant instance variables to the output stream and

readFrom() needs to read them back in.

It is important that size() returns the correct number of bytes, because some components (such

a message bundling in the transport) depend on this, as they need to measure the exact number

of bytes before sending a message. If size() returns fewer bytes than what will actually be written

to the stream, then it is possible that (if we use UDP with a 65535 bytes maximum) the datagram

packet is dropped by UDP !

The final requirement is to add the newly created header class to jg-magic-map.xml (in the ./conf

directory), or - if this is not a JGroups internal protocol - to add the class to ClassConfigurator.

This can be done with method

Chapter 6. Writing protocols

118

ClassConfigurator.getInstance().put(1899, MyHeader.class)

.

The code below shows how an application defines a custom header, MyHeader, and uses it to

attach additional information to message sent (to itself):

public class bla {

 public static void main(String[] args) throws Exception {

 JChannel ch=new JChannel();

 ch.connect("demo");

 ch.setReceiver(new ReceiverAdapter() {

 public void receive(Message msg) {

 MyHeader hdr=(MyHeader)msg.getHeader("x");

 System.out.println("-- received " + msg +

 ", header is " + hdr);

 }

 });

 ClassConfigurator.getInstance().add((short)1900, MyHeader.class);

 int cnt=1;

 for(int i=0; i < 5; i++) {

 Message msg=new Message();

 msg.putHeader((short)1900, new MyHeader(cnt++));

 ch.send(msg);

 }

 ch.close();

 }

 public static class MyHeader extends Header implements Streamable {

 int counter=0;

 public MyHeader() {

 }

 private MyHeader(int counter) {

 this.counter=counter;

 }

 public String toString() {

 return "counter=" + counter;

 }

Writing user defined headers

119

 public int size() {

 return Global.INT_SIZE;

 }

 public void writeTo(DataOutputStream out) throws IOException {

 out.writeInt(counter);

 }

 public void readFrom(DataInputStream in) throws IOException,

 IllegalAccessException,

 InstantiationException {

 counter=in.readInt();

 }

 }

}

The MyHeader class has an empty public constructor and implements the writeExternal() and

readExternal() methods with no-op implementations.

The state is represented as an integer counter. Method size() returns 4 bytes (Global.INT_SIZE),

which is the number of bytes written by writeTo() and read by readFrom().

Before sending messages with instances of MyHeader attached, the program registers the

MyHeader class with the ClassConfigurator. The example uses a magic number of 1900, but

any number greater than 1024 can be used. If the magic number was already taken, an

IllegalAccessException would be thrown.

The final part is adding an instance of MyHeader to a message using Message.putHeader(). The

first argument is a name which has to be unique across all headers for a given message. Usually,

protocols use the protocol name (e.g. "UDP", "NAKACK"), so these names should not be used by

an application. The second argument is an instance of the header.

Getting a header is done through Message.getHeader() which takes the name as argument. This

name of course has to be the same as the one used in putHeader().

120

Chapter 7.

121

List of Protocols
This chapter describes the most frequently used protocols, and their configuration. Ergonomics

(Section 5.15, “Ergonomics”) strives to reduce the number of properties that have to be configured,

by dynamically adjusting them at run time, however, this is not yet in place.

Meanwhile, we recommend that users should copy one of the predefined configurations (shipped

with JGroups), e.g. udp.xml or tcp.xml, and make only minimal changes to it.

This section is work in progress; we strive to update the documentation as we make changes to

the code.

7.1. Properties availabe in every protocol

The table below lists properties that are available in all protocols, as they're defined in the

superclass of all protocols, org.jgroups.stack.Protocol.

Table 7.1. Properties of org.jgroups.stack.Protocol

Name Description

stats Whether the protocol should collect protocol-

specific runtime statistics. What those

statistics are (or whether they even exist)

depends on the particular protocol. See

the org.jgroups.stack.Protocol javadoc for the

available API related to statistics. Default is

true.

ergonomics Turns on ergonomics. See Section 5.15,

“Ergonomics” for details.

id Gives the protocol a different ID if needed so

we can have multiple instances of it in the same

stack

7.2. Transport

TP is the base class for all transports, e.g. UDP and TCP. All of the properties defined here are

inherited by the subclasses. The properties for TP are:

Table 7.2. Properties

Name Description

bind_addr The bind address which should be used by

this transport. The following special values

are also recognized: GLOBAL, SITE_LOCAL,

Chapter 7. List of Protocols

122

Name Description

LINK_LOCAL, NON_LOOPBACK, match-

interface, match-host, match-address

bind_interface_str The interface (NIC) which should be used by

this transport

bind_port The port to which the transport binds. Default

of 0 binds to any (ephemeral) port

bundler_capacity The max number of elements in a bundler if the

bundler supports size limitations

bundler_type The type of bundler used. Has to be "sender-

sends-with-timer", "transfer-queue" (default) or

"sender-sends"

diagnostics_addr Address for diagnostic probing. Default is

224.0.75.75

diagnostics_bind_interfaces Comma delimited list of interfaces (IP

addresses or interface names) that the

diagnostics multicast socket should bind to

diagnostics_passcode Authorization passcode for diagnostics. If

specified every probe query will be authorized

diagnostics_port Port for diagnostic probing. Default is 7500

diagnostics_ttl TTL of the diagnostics multicast socket

discard_incompatible_packets Discard packets with a different version if true

enable_batching Allows the transport to pass received message

batches up as MessagesBatch instances

(up(MessageBatch)), rather than individual

messages. This flag will be removed in a future

version when batching has been implemented

by all protocols

enable_bundling Enable bundling of smaller messages into

bigger ones. Default is true

enable_diagnostics Switch to enable diagnostic probing. Default is

true

enable_unicast_bundling Enable bundling of smaller messages into

bigger ones for unicast messages. Default is

true

external_addr Use "external_addr" if you have hosts on

different networks, behind firewalls. On each

firewall, set up a port forwarding rule

(sometimes called "virtual server") to the local

IP (e.g. 192.168.1.100) of the host then on

Transport

123

Name Description

each host, set "external_addr" TCP transport

parameter to the external (public IP) address of

the firewall.

external_port Used to map the internal port (bind_port) to an

external port. Only used if > 0

ignore_dont_bundle Whether or not messages with

DONT_BUNDLE set should be ignored by

default (JGRP-1737). This property will be

removed in a future release, so don't use it

internal_thread_pool_enabled Switch for enabling thread pool for internal

messages

internal_thread_pool_keep_alive_time Timeout in ms to remove idle threads from the

internal pool

internal_thread_pool_max_threads Maximum thread pool size for the internal

thread pool

internal_thread_pool_min_threads Minimum thread pool size for the internal

thread pool

internal_thread_pool_queue_enabled Queue to enqueue incoming internal

messages

internal_thread_pool_queue_max_size Maximum queue size for incoming internal

messages

internal_thread_pool_rejection_policy Thread rejection policy. Possible values are

Abort, Discard, DiscardOldest and Run

log_discard_msgs whether or not warnings about messages from

different groups are logged

log_discard_msgs_version whether or not warnings about messages from

members with a different version are discarded

logical_addr_cache_expiration Time (in ms) after which entries in the logical

address cache marked as removable can be

removed. 0 never removes any entries (not

recommended)

logical_addr_cache_max_size Max number of elements in the logical address

cache before eviction starts

logical_addr_cache_reaper_interval Interval (in ms) at which the reaper task scans

logical_addr_cache and removes entries

marked as removable. 0 disables reaping.

loopback Messages to self are looped back immediately

if true

Chapter 7. List of Protocols

124

Name Description

loopback_copy Whether or not to make a copy of a message

before looping it back up. Don't use this; might

get removed without warning

loopback_separate_thread Loop back the message on a separate thread

or use the current thread. Don't use this; might

get removed without warning

max_bundle_size Maximum number of bytes for messages to be

queued until they are sent

max_bundle_timeout Max number of milliseconds until queued

messages are sent

oob_thread_pool_enabled Switch for enabling thread pool for OOB

messages. Default=true

oob_thread_pool_keep_alive_time Timeout in ms to remove idle threads from the

OOB pool

oob_thread_pool_max_threads Max thread pool size for the OOB thread pool

oob_thread_pool_min_threads Minimum thread pool size for the OOB thread

pool

oob_thread_pool_queue_enabled Use queue to enqueue incoming OOB

messages

oob_thread_pool_queue_max_size Maximum queue size for incoming OOB

messages

oob_thread_pool_rejection_policy Thread rejection policy. Possible values are

Abort, Discard, DiscardOldest and Run

physical_addr_max_fetch_attempts Max number of attempts to fetch a physical

address (when not in the cache) before giving

up

port_range The range of valid ports, from bind_port to

end_port. 0 only binds to bind_port and fails if

taken

receive_interfaces Comma delimited list of interfaces (IP

addresses or interface names) to receive

multicasts on

receive_on_all_interfaces If true, the transport should use all available

interfaces to receive multicast messages

singleton_name If assigned enable this transport to be a

singleton (shared) transport

suppress_time_different_cluster_warnings Time during which identical warnings about

messages from a member from a different

Transport

125

Name Description

cluster will be suppressed. 0 disables this

(every warning will be logged). Setting the log

level to ERROR also disables this.

suppress_time_different_version_warnings Time during which identical warnings about

messages from a member with a different

version will be suppressed. 0 disables this

(every warning will be logged). Setting the log

level to ERROR also disables this.

thread_naming_pattern Thread naming pattern for threads in this

channel. Valid values are "pcl": "p": includes

the thread name, e.g. "Incoming thread-1",

"UDP ucast receiver", "c": includes the cluster

name, e.g. "MyCluster", "l": includes the

local address of the current member, e.g.

"192.168.5.1:5678"

thread_pool_enabled Switch for enabling thread pool for regular

messages

thread_pool_keep_alive_time Timeout in milliseconds to remove idle thread

from regular pool

thread_pool_max_threads Maximum thread pool size for the regular

thread pool

thread_pool_min_threads Minimum thread pool size for the regular thread

pool

thread_pool_queue_enabled Queue to enqueue incoming regular messages

thread_pool_queue_max_size Maximum queue size for incoming OOB

messages

thread_pool_rejection_policy Thread rejection policy. Possible values are

Abort, Discard, DiscardOldest and Run

tick_time Tick duration in the HashedTimingWheel timer.

Only applicable if timer_type is "wheel"

time_service_interval Interval (in ms) at which the time service

updates its timestamp. 0 disables the time

service

timer_keep_alive_time Timeout in ms to remove idle threads from the

timer pool

timer_max_threads Max thread pool size for the timer thread pool

timer_min_threads Minimum thread pool size for the timer thread

pool

timer_queue_max_size Max number of elements on a timer queue

Chapter 7. List of Protocols

126

Name Description

timer_rejection_policy Timer rejection policy. Possible values are

Abort, Discard, DiscardOldest and Run

timer_type Type of timer to be used. Valid values

are "old" (DefaultTimeScheduler, used up to

2.10), "new" or "new2" (TimeScheduler2),

"new3" (TimeScheduler3) and "wheel". Note

that this property might disappear in future

releases, if one of the 3 timers is chosen as

default timer

wheel_size Number of ticks in the HashedTimingWheel

timer. Only applicable if timer_type is "wheel"

who_has_cache_timeout Timeout (in ms) to determine how long to wait

until a request to fetch the physical address

for a given logical address will be sent again.

Subsequent requests for the same physical

address will therefore be spaced at least

who_has_cache_timeout ms apart

bind_addr can be set to the address of a network interface, e.g. 192.168.1.5. It can also be

set for the entire stack using system property -Djgroups.bind_addr, which provides a value for

bind_addr unless it has already been set in the XML config.

The following special values are also recognized for bind_addr:

GLOBAL

Picks a global IP address if available. If not, falls back to a SITE_LOCAL IP address.

SITE_LOCAL

Picks a site local (non routable) IP address, e.g. from the 192.168.0.0 or 10.0.0.0 address

range.

LINK_LOCAL

Picks a link-local IP address, from 169.254.1.0 through 169.254.254.255.

NON_LOOPBACK

Picks any non loopback address.

LOOPBACK

Pick a loopback address, e.g. 127.0.0.1.

match-interface

Pick an address which matches a pattern against the interface name, e.g. match-

interface:eth.*

UDP

127

match-address

Pick an address which matches a pattern against the host address, e.g. match-

address:192.168.*

match-host

Pick an address which matches a pattern against the host name, e.g. match-host:linux.*

An example of setting the bind address in UDP to use a site local address is:

 <UDP bind_addr="SITE_LOCAL" />

This will pick any address of any interface that's site-local, e.g. a 192.168.x.x or 10.x.x.x

address.

7.2.1. UDP

UDP uses IP multicast for sending messages to all members of a group and UDP datagrams

for unicast messages (sent to a single member). When started, it opens a unicast and multicast

socket: the unicast socket is used to send/receive unicast messages, whereas the multicast socket

sends and receives multicast messages. The channel's physical address will be the address and

port number of the unicast socket.

A protocol stack with UDP as transport protocol is typically used with clusters whose members run

in the same subnet. If running across subnets, an admin has to ensure that IP multicast is enabled

across subnets. It is often the case that IP multicast is not enabled across subnets. In such cases,

the stack has to either use UDP without IP multicasting or other transports such as TCP.

Table 7.3. Properties

Name Description

disable_loopback If true, disables IP_MULTICAST_LOOP on the

MulticastSocket (for sending and receiving of

multicast packets). IP multicast packets send

on a host P will therefore not be received by

anyone on P. Use with caution.

ip_mcast Multicast toggle. If false multiple unicast

datagrams are sent instead of one multicast.

Default is true

ip_ttl The time-to-live (TTL) for multicast datagram

packets. Default is 8

mcast_group_addr The multicast address used for sending and

receiving packets. Default is 228.8.8.8

Chapter 7. List of Protocols

128

Name Description

mcast_port The multicast port used for sending and

receiving packets. Default is 7600

mcast_recv_buf_size Receive buffer size of the multicast datagram

socket. Default is 500'000 bytes

mcast_send_buf_size Send buffer size of the multicast datagram

socket. Default is 100'000 bytes

suppress_time_out_of_buffer_space Suppresses warnings on Mac OS (for now)

about not enough buffer space when sending

a datagram packet

tos Traffic class for sending unicast and multicast

datagrams. Default is 8

ucast_recv_buf_size Receive buffer size of the unicast datagram

socket. Default is 64'000 bytes

ucast_send_buf_size Send buffer size of the unicast datagram

socket. Default is 100'000 bytes

7.2.2. TCP

Specifying TCP in your protocol stack tells JGroups to use TCP to send messages between

cluster members. Instead of using a multicast bus, the cluster members create a mesh of TCP

connections.

For example, while UDP sends 1 IP multicast packet when sending a message to a cluster of

10 members, TCP needs to send the message 9 times. It sends the same message to the first

member, to the second member, and so on (excluding itself as the message is looped back

internally).

This is slow, as the cost of sending a group message is O(n) with TCP, where it is O(1) with UDP.

As the cost of sending a group message with TCP is a function of the cluster size, it becomes

higher with larger clusters.

Note

We recommend to use UDP for larger clusters, whenever possible

Table 7.4. Properties

Name Description

client_bind_addr The address of a local network interface which

should be used by client sockets to bind to. The

following special values are also recognized:

TUNNEL

129

Name Description

GLOBAL, SITE_LOCAL, LINK_LOCAL and

NON_LOOPBACK

client_bind_port The local port a client socket should bind to. If

0, an ephemeral port will be picked.

conn_expire_time Max time connection can be idle before being

reaped (in ms)

defer_client_bind_addr If true, client sockets will not explicitly bind to

bind_addr but will defer to the native socket

linger SO_LINGER in msec. Default of -1 disables it

peer_addr_read_timeout Max time to block on reading of peer address

reaper_interval Reaper interval in msec. Default is 0 (no

reaping)

recv_buf_size Receiver buffer size in bytes

send_buf_size Send buffer size in bytes

send_queue_size Max number of messages in a send queue

sock_conn_timeout Max time allowed for a socket creation in

connection table

tcp_nodelay Should TCP no delay flag be turned on

use_send_queues Should separate send queues be used for each

connection

7.2.3. TUNNEL

TUNNEL was described in Section 5.3.4, “TUNNEL”.

Table 7.5. Properties (experimental)

Name Description

gossip_router_hosts A comma-separated list of GossipRouter

hosts, e.g. HostA[12001],HostB[12001]

reconnect_interval Interval in msec to attempt connecting back

to router in case of torn connection. Default is

5000 msec

tcp_nodelay Should TCP no delay flag be turned on

7.3. Initial membership discovery

The task of the discovery is to find an initial membership, which is used to determine the current

coordinator. Once a coordinator is found, the joiner sends a JOIN request to the coord.

Chapter 7. List of Protocols

130

Discovery is also called periodically by MERGE2 (see Section 7.4.1, “MERGE2”), to see if we

have diverging cluster membership information.

7.3.1. Discovery

Discovery is the superclass for all discovery protocols and therefore its properties below can be

used in any subclass.

Discovery sends a discovery request, and waits for num_initial_members discovery responses,

or timeout ms, whichever occurs first, before returning. Note that break_on_coord_rsp="true"

will return as soon as we have a response from a coordinator.

Table 7.6. Properties

Name Description

always_send_physical_addr_with_discovery_requestWhen sending a discovery request, always

send the physical address and logical name too

async_discovery If true then the discovery is done on a separate

timer thread. Should be set to true when

discovery is blocking and/or takes more than a

few milliseconds

break_on_coord_rsp Return from the discovery phase as soon as

we have 1 coordinator response

discovery_rsp_expiry_time Expiry time of discovery responses in ms

force_sending_discovery_rsps Always sends a discovery response, no matter

what

max_members_in_discovery_request Max size of the member list shipped with a

discovery request. If we have more, the mbrs

field in the discovery request header is nulled

and members return the entire membership,

not individual members

num_initial_members Minimum number of initial members to get a

response from

num_initial_srv_members Minimum number of server responses

(PingData.isServer()=true). If this value

is greater than 0, we'll ignore

num_initial_members

return_entire_cache Whether or not to return the entire logical-

physical address cache mappings on a

discovery request, or not.

stagger_timeout If greater than 0, we'll wait a random number

of milliseconds in range [0..stagger_timeout]

before sending a discovery response. This

PING

131

Name Description

prevents traffic spikes in large clusters when

everyone sends their discovery response at the

same time

timeout Timeout to wait for the initial members

use_disk_cache If a persistent disk cache (PDC) is present,

combine the discovery results with the contents

of the disk cache before returning the results

7.3.1.1. Discovery and local caches

Besides finding the current coordinator in order to send a JOIN request to it, discovery also fetches

information about members and adds it to its local caches. This information includes the logical

name, UUID and IP address/port of each member. When discovery responses are received, the

information in it will be added to the local caches.

Since 3.5 it is possible to define this information in a single file, with each line providing information

about one member. The file contents look like this:

m1.1 1 10.240.78.26:7800 T

m2.1 2 10.240.122.252:7800 F

m3.1 3 10.240.199.15:7800 F

This file defines information about 3 members m1.1, m2.1 and m3.1. The first element

("m1.1") is the logical name. Next comes the UUID (1), followed by the IP address and port

(10.240.78.26:7800). T means that the member is the current coordinator.

Methods dumpCache() can be used to write the current contents of any member to a file (in the

above format) and addToCache() can be used to add the contents of a file to any member. These

operations can for example be invoked via JMX or probe.sh.

Refer to the section on FILE_PING for more information on how to use these files to speed up

the discovery process.

7.3.2. PING

Initial (dirty) discovery of members. Used to detect the coordinator (oldest member), by mcasting

PING requests to an IP multicast address.

Each member responds with a packet {C, A}, where C=coordinator's address and A=own address.

After N milliseconds or M replies, the joiner determines the coordinator from the responses, and

sends a JOIN request to it (handled by GMS). If nobody responds, we assume we are the first

member of a group.

Unlike TCPPING, PING employs dynamic discovery, meaning that the member does not have to

know in advance where other cluster members are.

Chapter 7. List of Protocols

132

PING uses the IP multicasting capabilities of the transport to send a discovery request to the

cluster. It therefore requires UDP as transport.

7.3.3. TCPPING

TCPPING is used with TCP as transport, and uses a static list of cluster members's addresses.

See Section 5.3.3.1, “Using TCP and TCPPING” for details.

Table 7.7. Properties

Name Description

initial_hosts Comma delimited list of hosts to be contacted

for initial membership

max_dynamic_hosts max number of hosts to keep beyond the ones

in initial_hosts

port_range Number of additional ports to be probed

for membership. A port_range of 0

does not probe additional ports. Example:

initial_hosts=A[7800] port_range=0 probes

A:7800, port_range=1 probes A:7800 and

A:7801

Note

It is recommended to include the addresses of all cluster members in

initial_hosts.

7.3.4. TCPGOSSIP

TCPGOSSIP uses an external GossipRouter to discover the members of a cluster. See

Section 5.3.3.2, “Using TCP and TCPGOSSIP” for details.

Table 7.8. Properties

Name Description

initial_hosts Comma delimited list of hosts to be contacted

for initial membership

reconnect_interval Interval (ms) by which a disconnected stub

attempts to reconnect to the GossipRouter

sock_conn_timeout Max time for socket creation. Default is 1000

msec

sock_read_timeout Max time in milliseconds to block on a read. 0

blocks forever

MPING

133

7.3.5. MPING

MPING (=Multicast PING) uses IP multicast to discover the initial membership. It can be used with

all transports, but usually is used in combination with TCP. TCP usually requires TCPPING, which

has to list all cluster members explicitly, but MPING doesn't have this requirement. The typical

use case for this is when we want TCP as transport, but multicasting for discovery so we don't

have to define a static list of initial hosts in TCPPING

MPING uses its own multicast socket for discovery. Properties bind_addr (can also be set via -

Djgroups.bind_addr=), mcast_addr and mcast_port can be used to configure it.

Note that MPING requires a separate thread listening on the multicast socket for discovery

requests.

Table 7.9. Properties

Name Description

bind_addr Bind address for multicast socket. The

following special values are also recognized:

GLOBAL, SITE_LOCAL, LINK_LOCAL and

NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by

this transport

ip_ttl Time to live for discovery packets. Default is 8

mcast_addr Multicast address to be used for discovery

mcast_port Multicast port for discovery packets. Default is

7555

receive_interfaces List of interfaces to receive multicasts on

receive_on_all_interfaces If true, the transport should use all available

interfaces to receive multicast messages.

Default is false

send_interfaces List of interfaces to send multicasts on

send_on_all_interfaces Whether send messages are sent on all

interfaces. Default is false

7.3.6. FILE_PING
This uses a shared directory into which all members write their addresses. New joiners read all

addresses from this directory (which needs to be shared, e.g. via NFS or SMB) and ping each of

the elements of the resulting set of members. When a member leaves, it deletes its corresponding

file.

FILE_PING can be used instead of GossipRouter in cases where no external process is desired.

Chapter 7. List of Protocols

134

Since 3.5, the way FILE_PING performs discovery has changed. The following paragraphs

describe the new mechanism to discover members via FILE_PING or subclasses (e.g. S3_PING

or GOOGLE_PING), so this applies to all cloud-based stores as well.

Instead of storing 1 file per member in the file system or cloud store, we only store 1 file for all

members. This has the advantage, especially in cloud stores, that the number of reads is not a

function of the cluster size, e.g. we don't have to perform 1000 reads for member discovery in a

1000 node cluster, but just a single read. This is important as the cost of 1000 times the round

trip time of a (REST) call to the cloud store is certainly higher that the cost of a single call. There

may also be a charge for calls to the cloud, so a reduced number of calls lead to reduced charges

for cloud store access, especially in large clusters.

The current coordinator is always in charge of writing the file; participants never write it, but only

read it. When there is a split and we have multiple coordinator, we may also have multiple files.

The name of a file is always UUID.logical_name.list, e.g. 0000-0000-000000000001.m1.1.list,

which has a UUID of 1, a logical name of "m1.1" and the suffix ".list".

7.3.6.1. Configuration with a preconfigured bootstrap file

To speed up the discovery process when starting a large cluster, a predefined bootstrap file can

be used. Every node then needs to have an entry in the file and its UUID and IP address:port

needs to be the same as in the file. For example, when using the following bootstrap file:

m1.1 1 10.240.78.26:7800 T

m2.1 2 10.240.122.252:7800 F

m3.1 3 10.240.199.15:7800 F

, the member called "m1.1" needs to have a UUID of 1, and needs to run on host 10.240.78.26

on port 7800. The UUID can be injected via an AddressGenerator (see UPerf for an example).

When a member starts, it loads the bootstrap file, which contains information about all other

members, and thus (ideally) never needs to run a discovery process. In the above example, the

new joiner also knows that the current coordinator (marked with a 'T') is m1.1, so it can send its

JOIN request to that node.

When the coordinator changes, or members not listed in the file join, the current coordinator writes

the file again, so all members have access to the updated information when needed.

If a bootstrap discovery file is to be used, it needs to be placed into the file system or cloud store

in the correct location and with the right name (see the Discovery section for naming details).

The design is discussed in more detail in CloudBasedDiscovery.txt [https://github.com/belaban/

JGroups/blob/master/doc/design/CloudBasedDiscovery.txt]

https://github.com/belaban/JGroups/blob/master/doc/design/CloudBasedDiscovery.txt
https://github.com/belaban/JGroups/blob/master/doc/design/CloudBasedDiscovery.txt
https://github.com/belaban/JGroups/blob/master/doc/design/CloudBasedDiscovery.txt

JDBC_PING

135

Table 7.10. Properties

Name Description

interval Interval (in milliseconds) at which the own

Address is written. 0 disables it.

location The absolute path of the shared file

7.3.7. JDBC_PING
This uses a shared Database into which all members write their addresses. New joiners read all

addresses from this Database and ping each of the elements of the resulting set of members.

When a member leaves, it deletes its corresponding record.

JDBC_PING is an alternative to S3_PING by using Amazon RDS instead of S3.

Table 7.11. Properties

Name Description

connection_driver The JDBC connection driver name

connection_password The JDBC connection password

connection_url The JDBC connection URL

connection_username The JDBC connection username

datasource_jndi_name To use a DataSource registered in JNDI,

specify the JNDI name here. This is an

alternative to all connection_* configuration

options: if this property is not empty, then all

connection relatedproperties must be empty.

delete_single_sql SQL used to delete a row. Customizable,

but keep the order of parameters and pick

compatible types: 1)Own Address, as String

2)Cluster name, as String

initialize_sql If not empty, this SQL statement will be

performed at startup.Customize it to create

the needed table on those databases which

permit table creation attempt without loosing

data, such as PostgreSQL and MySQL (using

IF NOT EXISTS). To allow for creation

attempts, errors performing this statement will

be loggedbut not considered fatal. To avoid any

DDL operation, set this to an empty string.

insert_single_sql SQL used to insert a new row. Customizable,

but keep the order of parameters and

pick compatible types: 1)Own Address, as

Chapter 7. List of Protocols

136

Name Description

String 2)Cluster name, as String 3)Serialized

PingData as byte[]

select_all_pingdata_sql SQL used to fetch all node's PingData.

Customizable, but keep the order of

parameters and pick compatible types: only

one parameter needed, String compatible,

representing the Cluster name. Must return a

byte[], the Serialized PingData as it was stored

by the insert_single_sql statement

7.3.8. BPING

BPING uses UDP broadcasts to discover other nodes. The default broadcast address (dest) is

255.255.255.255, and should be replaced with a subnet specific broadcast, e.g. 192.168.1.255.

Table 7.12. Properties

Name Description

bind_port Port for discovery packets

dest Target address for broadcasts. This should

be restricted to the local subnet, e.g.

192.168.1.255

port_range Sends discovery packets to ports 8555 to

(8555+port_range)

7.3.9. RACKSPACE_PING

RACKSPACE_PING uses Rackspace Cloud Files Storage to discover initial members. Each node

writes a small object in a shared Rackspace container. New joiners read all addresses from the

container and ping each of the elements of the resulting set of members. When a member leaves,

it deletes its corresponding object.

This objects are stored under a container called 'jgroups', and each node will write an object name

after the cluster name, plus a "/" followed by the address, thus simulating a hierarchical structure.

Table 7.13. Properties

Name Description

apiKey Rackspace API access key

container Name of the root container

region Rackspace region, either UK or US

username Rackspace username

S3_PING

137

7.3.10. S3_PING

S3_PING uses Amazon S3 to discover initial members. New joiners read all addresses from this

bucket and ping each of the elements of the resulting set of members. When a member leaves,

it deletes its corresponding file.

It's designed specifically for members running on Amazon EC2, where multicast traffic is not

allowed and thus MPING or PING will not work. When Amazon RDS is preferred over S3, or if a

shared database is used, an alternative is to use JDBC_PING.

Each instance uploads a small file to an S3 bucket and each instance reads the files out of this

bucket to determine the other members.

There are three different ways to use S3_PING, each having its own tradeoffs between security

and ease-of-use. These are described in more detail below:

• Private buckets, Amazon AWS credentials given to each instance

• Public readable and writable buckets, no credentials given to each instance

• Public readable but private writable buckets, pre-signed URLs given to each instance

Pre-signed URLs are the most secure method since writing to buckets still requires authorization

and you don't have to pass Amazon AWS credentials to every instance. However, they are also

the most complex to setup.

Here's a configuration example for private buckets with credentials given to each instance:

<S3_PING location="my_bucket" access_key="access_key"

 secret_access_key="secret_access_key" timeout="2000"

 num_initial_members="3"/>

Here's an example for public buckets with no credentials:

<S3_PING location="my_bucket"

 timeout="2000" num_initial_members="3"/>

And finally, here's an example for public readable buckets with pre-signed URLs:

<S3_PING pre_signed_put_url="http://s3.amazonaws.com/my_bucket/DemoCluster/

node1?

Chapter 7. List of Protocols

138

AWSAccessKeyId=access_key&Expires=1316276200&Signature=it1cUUtgCT9ZJyCJDj2xTAcRTFg

%3D"

 pre_signed_delete_url="http://s3.amazonaws.com/my_bucket/DemoCluster/

node1?AWSAccessKeyId=access_key&Expires=1316276200&Signature=u4IFPRq

%2FL6%2FAohykIW4QrKjR23g%3D"

 timeout="2000" num_initial_members="3"/>

Table 7.14. Properties

Name Description

access_key The access key to AWS (S3)

pre_signed_delete_url When non-null, we use this pre-signed URL for

DELETEs

pre_signed_put_url When non-null, we use this pre-signed URL for

PUTs

prefix When non-null, we set location to prefix-UUID

secret_access_key The secret access key to AWS (S3)

skip_bucket_existence_check Skip the code which checks if a bucket exists

in initialization

7.3.11. GOOGLE_PING

GOOGLE_PING is a subclass of S3_PING and inherits most of the functionality. It uses Google

Cloud Storage to store information about individual members.

The snippet below shows a sample config:

<GOOGLE_PING

 location="jgroups-bucket"

 access_key="GXXXXXX"

 secret_access_key="YYYYYY"

 timeout="2000" num_initial_members="3"/>

This will use a bucket "jgroups-bucket" or create one if it doesn't exist, then create another folder

under it with the cluster name, and finally use 1 object per member in that location for member info.

Table 7.15. Properties (experimental)

Name Description

host The name of the Google Cloud Storage server

SWIFT_PING

139

7.3.12. SWIFT_PING

SWIFT_PING uses Openstack Swift to discover initial members. Each node writes a small object

in a shared container. New joiners read all addresses from the container and ping each of the

elements of the resulting set of members. When a member leaves, it deletes its corresponding

object.

These objects are stored under a container called 'jgroups' (by default), and each node will write

an object name after the cluster name, plus a "/" followed by the address, thus simulating a

hierarchical structure.

Currently only Openstack Keystone authentication is supported. Here is a sample configuration

block:

<SWIFT_PING timeout="2000"

 num_initial_members="3"

 auth_type="keystone_v_2_0"

 auth_url="http://localhost:5000/v2.0/tokens"

 username="demo"

 password="password"

 tenant="demo" />

Table 7.16. Properties (experimental)

Name Description

auth_type Authentication type

auth_url Authentication url

container Name of the root container

password Password

tenant Openstack Keystone tenant name

username Username

7.3.13. AWS_PING

This is a protocol written by Meltmedia, which uses the AWS API. It is not part of JGroups, but

can be downloaded at http://meltmedia.github.io/jgroups-aws/.

7.3.14. PDC - Persistent Discovery Cache

The Persistent Discovery Cache can be used to cache the results of the discovery process

persistently. E.g. if we have TCPPING.initial_hosts configured to include only members A and B,

http://meltmedia.github.io/jgroups-aws/

Chapter 7. List of Protocols

140

but have a lot more members, then other members can bootstrap themselves and find the right

coordinator even when neither A nor B are running.

An example of a TCP-based stack configuration is:

<TCP />

<PDC cache_dir="/tmp/jgroups" />

<TCPPING timeout="2000" num_initial_members="20"

 initial_hosts="192.168.1.5[7000]" port_range="0"

 return_entire_cache="true"

 use_disk_cache="true" />

Table 7.17. Properties

Name Description

cache_dir The absolute path of the directory for the

disk cache. The mappings will be stored as

individual files in this directory

7.4. Merging after a network partition

7.4.1. MERGE2

If a cluster gets split for some reasons (e.g. network partition), this protocol merges the subclusters

back into one cluster. It is only run by the coordinator (the oldest member in a cluster), which

periodically multicasts its presence and view information. If another coordinator (for the same

cluster) receives this message, it will initiate a merge process. Note that this merges subgroups

{A,B} and {C,D,E} back into {A,B,C,D,E}, but it does not merge state. The application has to

handle the callback to merge state. See Section 5.6, “Handling network partitions” for suggestion

on merging states.

Following a merge, the coordinator of the merged group can shift from the typical case of

"the coordinator is the member who has been up the longest." During the merge process, the

coordinators of the various subgroups need to reach a common decision as to who the new

coordinator is. In order to ensure a consistent result, each coordinator combines the addresses

of all the members in a list and then sorts the list. The first member in the sorted list becomes

the coordinator. The sort order is determined by how the address implements the interface. Then

JGroups compares based on the UUID. So, take a hypothetical case where two machines were

running, with one machine running three separate cluster members and the other two members.

If communication between the machines were cut, the following subgroups would form: {A,B}

and {C,D,E} Following the merge, the new view would be: {C,D,A,B,E}, with C being the new

coordinator.

MERGE3

141

Note that "A", "B" and so on are just logical names, attached to UUIDs, but the actual sorting is

done on the actual UUIDs.

Table 7.18. Properties

Name Description

discovery_timeout Time (in ms) to wait for all discovery responses

force_sending_discovery_rsps Always sends a discovery response, no matter

what

inconsistent_view_threshold Number of inconsistent views with only 1 coord

after a MERGE event is sent up

max_interval Maximum time in ms between runs to discover

other clusters

merge_fast When receiving a multicast message, checks

if the sender is member of the cluster. If not,

initiates a merge. Generates a lot of traffic for

large clusters when there is a lot of merging

merge_fast_delay The delay (in milliseconds) after which a merge

fast execution is started

min_interval Minimum time in ms between runs to discover

other clusters

7.4.2. MERGE3

MERGE3 was added in JGroups 3.1.

In MERGE3, all members periodically send an INFO message with their address (UUID), logical

name, physical address and ViewId. The ViewId (Section 3.7.1, “ViewId”) is used to see if we have

diverging views among the cluster members: periodically, every coordinator looks at the INFO

messages received so far and checks if there are any inconsistencies.

When inconsistencies are found, the merge leader will be the member with the lowest address

(UUID). This is deterministic, and therefore we should at most times only have 1 merge going on.

The merge leader then asks the senders of the inconsistent ViewIds for their full Views. Once

received, it simply passes a MERGE event up the stack, where the merge will be handled (by

GMS) in exactly the same way as if MERGE2 has generated the MERGE event.

The advantages of MERGE3 compared to MERGE2 are:

• Sending of INFO messages is spread out over time, preventing messgage peaks which might

cause packet loss. This is especially important in large clusters.

• Only 1 merge should be running at any time. Competing merges, as happening with MERGE2,

slow down the merge process, and don't scale to large clusters.

Chapter 7. List of Protocols

142

• An INFO message carries the logical name and physical address of a member. Compared to

MERGE2, this allows us to immediately send messages to newly merged members, and not

have to solicit this information first.

• On the downside, MERGE3 has constant (small) traffic by all members.

• MERGE3 was written for an IP multicast capable transport (UDP), but it also works with other

transports (such as TCP), although it isn't as efficient on TCP as on UDP.

Table 7.19. Properties

Name Description

check_interval Interval (in ms) after which we check for view

inconsistencies

max_interval Interval (in milliseconds) when the next info

message will be sent. A random value is picked

from range [1..max_interval]

max_participants_in_merge The max number of merge participants to be

involved in a merge. 0 sets this to unlimited.

min_interval Minimum time in ms before sending an info

message

7.5. Failure Detection

The task of failure detection is to probe members of a group and see whether they are alive. When

a member is suspected (= deemed dead), then a SUSPECT message is sent to all nodes of the

cluster. It is not the task of the failure detection layer to exclude a crashed member (this is done

by the group membership protocol, GMS), but simply to notify everyone that a node in the cluster

is suspected of having crashed.

The SUSPECT message is handled by the GMS protocol of the current coordinator only; all other

members ignore it.

7.5.1. FD

Failure detection based on heartbeat messages. If reply is not received without timeout ms,

max_tries times, a member is declared suspected, and will be excluded by GMS

Each member send a message containing a "FD" - HEARTBEAT header to its neighbor to the

right (identified by the ping_dest address). The heartbeats are sent by the inner class Monitor.

When the neighbor receives the HEARTBEAT, it replies with a message containing a "FD" -

HEARTBEAT_ACK header. The first member watches for "FD" - HEARTBEAT_ACK replies from

its neigbor. For each received reply, it resets the last_ack timestamp (sets it to current time) and

num_tries counter (sets it to 0). The same Monitor instance that sends heartbeats whatches the

difference between current time and last_ack. If this difference grows over timeout, the Monitor

cycles several more times (until max_tries) is reached) and then sends a SUSPECT message

FD_ALL

143

for the neighbor's address. The SUSPECT message is sent down the stack, is addressed to all

members, and is as a regular message with a FdHeader.SUSPECT header.

Table 7.20. Properties

Name Description

max_tries Number of times to send an are-you-alive

message

msg_counts_as_heartbeat Treat messages received from members

as heartbeats. Note that this means we're

updating a value in a hashmap every time a

message is passing up the stack through FD,

which is costly.

timeout Timeout to suspect a node P if neither a

heartbeat nor data were received from P.

7.5.2. FD_ALL

Failure detection based on simple heartbeat protocol. Every member periodically multicasts a

heartbeat. Every member also maintains a table of all members (minus itself). When data or a

heartbeat from P are received, we reset the timestamp for P to the current time. Periodically, we

check for expired members, and suspect those.

Example: <FD_ALL interval="3000" timeout="10000"/>

In the example above, we send a heartbeat every 3 seconds and suspect members if we

haven't received a heartbeat (or traffic) for more than 10 seconds. Note that since we check the

timestamps every 'interval' milliseconds, we will suspect a member after roughly 4 * 3s == 12

seconds. If we set the timeout to 8500, then we would suspect a member after 3 * 3 secs == 9

seconds.

Table 7.21. Properties

Name Description

interval Interval at which a HEARTBEAT is sent to the

cluster

msg_counts_as_heartbeat Treat messages received from members

as heartbeats. Note that this means we're

updating a value in a hashmap every time

a message is passing up the stack through

FD_ALL, which is costly. Default is false

timeout Timeout after which a node P is suspected

if neither a heartbeat nor data were received

from P

Chapter 7. List of Protocols

144

Name Description

timeout_check_interval Interval at which the HEARTBEAT timeouts are

checked

use_time_service Uses TimeService to get the current time

rather than System.currentTimeMillis. Might

get removed soon, don't use !

7.5.3. FD_ALL2

Similar to FD_ALL, but doesn't use any timestamps. Instead, a boolean flag is associated with

each member. When a message or heartbeat (sent every interval ms) from P is received, P's flag

is set to true. The heartbeat checker checks every timeout ms for members whose flag is false,

suspects those, and - when done - resets all flags to false again.

Table 7.22. Properties (experimental)

Name Description

interval Interval at which a HEARTBEAT is sent to the

cluster

msg_counts_as_heartbeat Treat messages received from members

as heartbeats. Note that this means we're

updating a value in a hashmap every time

a message is passing up the stack through

FD_ALL2, which is costly. Default is false

timeout Timeout after which a node P is suspected

if neither a heartbeat nor data were received

from P

timeout_check_interval Interval at which the HEARTBEAT timeouts are

checked

7.5.4. FD_SOCK

Failure detection protocol based on a ring of TCP sockets created between cluster members.

Each member in a cluster connects to its neighbor (the last member connects to the first), thus

forming a ring. Member B is suspected when its neighbor A detects abnormally closing of its TCP

socket (presumably due to a node B crash). However, if a member B is about to leave gracefully,

it lets its neighbor A know, so that it does not become suspected.

If you are using a multi NIC machine note that JGroups versions prior to 2.2.8 have FD_SOCK

implementation that does not assume this possibility. Therefore JVM can possibly select NIC

unreachable to its neighbor and setup FD_SOCK server socket on it. Neighbor would be unable

to connect to that server socket thus resulting in immediate suspecting of a member. Suspected

member is kicked out of the group, tries to rejoin, and thus goes into join/leave loop. JGroups

FD_SOCK

145

version 2.2.8 introduces srv_sock_bind_addr property so you can specify network interface where

FD_SOCK TCP server socket should be bound. This network interface is most likely the same

interface used for other JGroups traffic. JGroups versions 2.2.9 and newer consult bind.address

system property or you can specify network interface directly as FD_SOCK bind_addr property.

Table 7.23. Properties

Name Description

bind_addr The NIC on which the ServerSocket should

listen on. The following special values are

also recognized: GLOBAL, SITE_LOCAL,

LINK_LOCAL and NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by

this transport

client_bind_port Start port for client socket. Default value of 0

picks a random port

external_addr Use "external_addr" if you have hosts on

different networks, behind firewalls. On each

firewall, set up a port forwarding rule

(sometimes called "virtual server") to the local

IP (e.g. 192.168.1.100) of the host then on

each host, set "external_addr" TCP transport

parameter to the external (public IP) address of

the firewall.

external_port Used to map the internal port (bind_port) to an

external port. Only used if > 0

get_cache_timeout Timeout for getting socket cache from

coordinator. Default is 1000 msec

keep_alive Whether to use KEEP_ALIVE on the ping

socket or not. Default is true

num_tries Number of attempts coordinator is solicited for

socket cache until we give up. Default is 3

port_range Number of ports to probe for start_port and

client_bind_port

sock_conn_timeout Max time in millis to wait for ping

Socket.connect() to return

start_port Start port for server socket. Default value of 0

picks a random port

suspect_msg_interval Interval for broadcasting suspect messages.

Default is 5000 msec

Chapter 7. List of Protocols

146

7.5.5. FD_PING

FD_PING uses a script or command that is run with 1 argument (the host to be pinged) and needs

to return 0 (success) or 1 (failure). The default command is /sbin/ping (ping.exe on Windows), but

this is user configurable and can be replaced with any user-provided script or executable.

7.5.6. FD_HOST

To detect the crash or freeze of entire hosts and all of the cluster members running on them,

FD_HOST can be used. It is not meant to be used in isolation, as it doesn't detect crashed

members on the local host, but in conjunction with other failure detection protocols, such as

FD_ALL or FD_SOCK.

FD_HOST can be used when we have multiple cluster members running on a physical box. For

example, if we have members {A,B,C,D} running on host 1 and {M,N,O,P} running on host 2, and

host 1 is powered down, then A, B, C and D are suspected and removed from the cluster together,

typically in one view change.

By default, FD_HOST uses InetAddress.isReachable() to perform liveness checking of other

hosts, but if property cmd is set, then any script or command can be used. FD_HOST will

launch the command and pass the IP address ot the host to be checked as argument. Example:

cmd="ping -c 3".

A typical failure detection configuration would look like this:

...

<FD_SOCK/>

<FD_ALL timeout="60000" interval="20000"/>

<FD_HOST interval="10000" timeout="35000" />

...

If we have members {A,B,C} on host 192.168.1.3, {M,N,O} on 192.168.1.4 and {X,Y,Z} on

192.168.1.5, then the behavior is as follows:

Table 7.24. Failure detection behavior

Scenario Behavior

Any member (say O) crashes FD_SOCK detects this immediately (as the

TCP socket was closed). O is suspected and

removed

Member Y hangs FD_ALL starts missing heartbeats from Y (note

that host 192.168.1.5 is up) and suspects Y

after 60 seconds. Y is removed from the view.

VERIFY_SUSPECT

147

Scenario Behavior

Host 192.168.1.3 is shutdown (shutdown -h

now)

Since this is a graceful shutdown, the

OS closes all sockets. FD_SOCK therefore

suspects A, B and C and removes them from

the view immediately.

The power supply to host 192.168.1.3 is cut,

or 192.168.1.3 panicked

FD_HOST detects that 192.168.1.3 is not alive

and suspects A, B and C after ~35 to 45s.

Member N leaves Since this is a graceful leave, none of the failure

detection protocols kick in

Table 7.25. Properties

Name Description

check_timeout Max time (in ms) that a liveness check for a

single host can take

cmd The command used to check a given

host for liveness. Example: "ping". If null,

InetAddress.isReachable() will be used by

default

interval The interval (in ms) at which the hosts are

checked for liveness

timeout Max time (in ms) after which a host is

suspected if it failed all liveness checks

use_time_service Uses TimeService to get the current time

rather than System.currentTimeMillis. Might

get removed soon, don't use !

7.5.7. VERIFY_SUSPECT

Verifies that a suspected member is really dead by pinging that member one last time before

excluding it, and dropping the suspect message if the member does respond.

VERIFY_SUSPECT tries to minimize false suspicions.

The protocol works as follows: it catches SUSPECT events traveling up the stack. The it verifies

that the suspected member is really dead. If yes, it passes the SUSPECT event up the stack,

otherwise it discards it. VERIFY_SUSPECT Has to be placed somewhere above the failure

detection protocol and below the GMS protocol (receiver of the SUSPECT event). Note that

SUSPECT events may be reordered by this protocol.

Chapter 7. List of Protocols

148

Table 7.26. Properties

Name Description

bind_addr Interface for ICMP pings. Used if use_icmp

is true The following special values are

also recognized: GLOBAL, SITE_LOCAL,

LINK_LOCAL and NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by

this transport

num_msgs Number of verify heartbeats sent to a

suspected member

timeout Number of millisecs to wait for a response from

a suspected member

use_icmp Use InetAddress.isReachable() to verify

suspected member instead of regular

messages

use_mcast_rsps Send the I_AM_NOT_DEAD message back as

a multicast rather than as multiple unicasts

(default is false)

7.6. Reliable message transmission

7.6.1. pbcast.NAKACK

NAKACK provides reliable delivery and FIFO (= First In First Out) properties for messages sent

to all nodes in a cluster.

Reliable delivery means that no message sent by a sender will ever be lost, as all messages

are numbered with sequence numbers (by sender) and retransmission requests are sent to the

sender of a message1 if that sequence number is not received.

FIFO order means that all messages from a given sender are received in exactly the order in

which they were sent.

NAKACK is a Lossless and FIFO delivery of multicast messages, using negative acks. E.g. when

receiving P:1, P:3, P:4, a receiver delivers only P:1, and asks P for retransmission of message 2,

queuing P3-4. When P2 is finally received, the receiver will deliver P2-4 to the application.

1 Note that NAKACK can also be configured to send retransmission requests for M to anyone in the cluster, rather than

only to the sender of M.

pbcast.NAKACK

149

Table 7.27. Properties

Name Description

become_server_queue_size Size of the queue to hold messages

received after creating the channel, but

before being connected (is_server=false).

After becoming the server, the messages

in the queue are fed into up() and the

queue is cleared. The motivation is to avoid

retransmissions (see https://issues.jboss.org/

browse/JGRP-1509 for details). 0 disables the

queue.

discard_delivered_msgs Should messages delivered to application be

discarded

exponential_backoff The first value (in milliseconds) to use in the

exponential backoff. Enabled if greater than 0

log_discard_msgs discards warnings about promiscuous traffic

log_not_found_msgs If true, trashes warnings about retransmission

messages not found in the xmit_table (used for

testing)

max_msg_batch_size Max number of messages to be removed from

a NakReceiverWindow. This property might get

removed anytime, so don't use it !

max_rebroadcast_timeout Timeout to rebroadcast messages. Default is

2000 msec

print_stability_history_on_failed_xmit Should stability history be printed if we fail in

retransmission. Default is false

retransmit_timeouts Timeout before requesting retransmissions

suppress_time_non_member_warnings Time during which identical warnings about

messages from a non member will be

suppressed. 0 disables this (every warning will

be logged). Setting the log level to ERROR also

disables this.

use_mcast_xmit Retransmit retransmit responses (messages)

using multicast rather than unicast

use_mcast_xmit_req Use a multicast to request retransmission of

missing messages

use_range_based_retransmitter Whether to use the old retransmitter which

retransmits individual messages or the new

one which uses ranges of retransmitted

messages. Default is true. Note that this

Chapter 7. List of Protocols

150

Name Description

property will be removed in 3.0; it is only

used to switch back to the old (and proven)

retransmitter mechanism if issues occur

xmit_from_random_member Ask a random member for retransmission of a

missing message. Default is false

xmit_stagger_timeout Number of milliseconds to delay the sending of

an XMIT request. We pick a random number

in the range [1 .. xmit_req_stagger_timeout]

and add this to the scheduling time of an XMIT

request. When use_mcast_xmit is enabled,

if a number of members drop messages

from the same member, then chances are

that, if staggering is enabled, somebody else

already sent the XMIT request (via mcast)

and we can cancel the XMIT request once

we receive the missing messages. For unicast

XMIT responses (use_mcast_xmit=false), we

still have an advantage by not overwhelming

the receiver with XMIT requests, all at the same

time. 0 disabless staggering.

xmit_table_max_compaction_time Number of milliseconds after which the matrix

in the retransmission table is compacted (only

for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in

the retransmission table (only for experts). The

capacity of the matrix is xmit_table_num_rows

* xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the

retransmission table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the

retransmission table (only for experts)

7.6.2. NAKACK2

NAKACK2 was introduced in 3.1 and is a successor to NAKACK (at some point it will replace

NAKACK). It has the same properties as NAKACK, but its implementation is faster and uses less

memory, plus it creates fewer tasks in the timer.

Some of the properties of NAKACK were deprecated in NAKACK2, but were not removed so

people can simply change from NAKACK to NAKACK2 by changing the protocol name in the

config.

NAKACK2

151

Table 7.28. Properties

Name Description

become_server_queue_size Size of the queue to hold messages

received after creating the channel, but

before being connected (is_server=false).

After becoming the server, the messages

in the queue are fed into up() and the

queue is cleared. The motivation is to avoid

retransmissions (see https://issues.jboss.org/

browse/JGRP-1509 for details). 0 disables the

queue.

discard_delivered_msgs Should messages delivered to application be

discarded

log_discard_msgs discards warnings about promiscuous traffic

log_not_found_msgs If true, trashes warnings about retransmission

messages not found in the xmit_table (used for

testing)

max_msg_batch_size Max number of messages to be removed from

a RingBuffer. This property might get removed

anytime, so don't use it !

max_rebroadcast_timeout Timeout to rebroadcast messages. Default is

2000 msec

print_stability_history_on_failed_xmit Should stability history be printed if we fail in

retransmission. Default is false

suppress_time_non_member_warnings Time during which identical warnings about

messages from a non member will be

suppressed. 0 disables this (every warning will

be logged). Setting the log level to ERROR also

disables this.

use_mcast_xmit Retransmit retransmit responses (messages)

using multicast rather than unicast

use_mcast_xmit_req Use a multicast to request retransmission of

missing messages

xmit_from_random_member Ask a random member for retransmission of a

missing message. Default is false

xmit_interval Interval (in milliseconds) at which missing

messages (from all retransmit buffers) are

retransmitted

Chapter 7. List of Protocols

152

Name Description

xmit_table_max_compaction_time Number of milliseconds after which the matrix

in the retransmission table is compacted (only

for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in

the retransmission table (only for experts). The

capacity of the matrix is xmit_table_num_rows

* xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the

retransmission table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the

retransmission table (only for experts)

7.6.3. UNICAST

UNICAST provides reliable delivery and FIFO (= First In First Out) properties for point-to-point

messages between one sender and one receiver.

Reliable delivery means that no message sent by a sender will ever be lost, as all messages

are numbered with sequence numbers (by sender) and retransmission requests are sent to the

sender of a message if that sequence number is not received.

FIFO order means that all messages from a given sender are received in exactly the order in

which they were sent.

UNICAST uses positive acks for retransmission; sender A keeps sending message M until receiver

B delivers M and sends an ack(M) to A, or until B leaves the cluster or A crashes.

Although JGroups attempts to send acks selectively, UNICAST will still see a lot of acks on the

wire. If this is not desired, use UNICAST2 (see Section 7.6.4, “UNICAST2”).

On top of a reliable transport, such as TCP, UNICAST is not really needed. However, concurrent

delivery of messages from the same sender is prevented by UNICAST by acquiring a lock on the

sender's retransmission table, so unless concurrent delivery is desired, UNICAST should not be

removed from the stack even if TCP is used.

Table 7.29. Properties

Name Description

conn_expiry_timeout Time (in milliseconds) after which an idle

incoming or outgoing connection is closed. The

connection will get re-established when used

again. 0 disables connection reaping

max_msg_batch_size Max number of messages to be removed from

a retransmit window. This property might get

removed anytime, so don't use it !

UNICAST2

153

Name Description

max_retransmit_time Max number of milliseconds we try to

retransmit a message to any given member.

After that, the connection is removed. Any new

connection to that member will start with seqno

#1 again. 0 disables this

segment_capacity Size (in bytes) of a Segment in the segments

table. Only for experts, do not use !

timeout n/a

xmit_interval Interval (in milliseconds) at which messages in

the send windows are resent

xmit_table_max_compaction_time Number of milliseconds after which the matrix

in the retransmission table is compacted (only

for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in

the retransmission table (only for experts). The

capacity of the matrix is xmit_table_num_rows

* xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the

retransmission table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the

retransmission table (only for experts)

7.6.4. UNICAST2

UNICAST2 provides lossless, ordered, communication between 2 members. Contrary to

UNICAST, it uses negative acks (similar to NAKACK) rather than positive acks. This reduces the

communication overhead required for sending an ack for every message.

Negative acks have sender A simply send messages without retransmission, and receivers never

ack messages, until they detect a gap: for instance, if A sends messages 1,2,4,5, then B delivers

1 and 2, but queues 4 and 5 because it is missing message 3 from A. B then asks A to retransmit

3. When 3 is received, messages 3, 4 and 5 can be delivered to the application.

Compared to a positive ack scheme as used in UNICAST, negative acks have the advantage

that they generate less traffic: if all messages are received in order, we never need to do

retransmission.

Table 7.30. Properties

Name Description

conn_expiry_timeout Time (in milliseconds) after which an idle

incoming or outgoing connection is closed. The

Chapter 7. List of Protocols

154

Name Description

connection will get re-established when used

again. 0 disables connection reaping

exponential_backoff The first value (in milliseconds) to use in the

exponential backoff. Enabled if greater than 0

log_not_found_msgs If true, trashes warnings about retransmission

messages not found in the xmit_table (used for

testing)

max_bytes Max number of bytes before a stability

message is sent to the sender

max_msg_batch_size Max number of messages to be removed from

a NakReceiverWindow. This property might get

removed anytime, so don't use it !

max_retransmit_time Max number of milliseconds we try to

retransmit a message to any given member.

After that, the connection is removed. Any new

connection to that member will start with seqno

#1 again. 0 disables this

max_stable_msgs Max number of STABLE messages sent for the

same highest_received seqno. A value < 1 is

invalid

stable_interval Max number of milliseconds before a stability

message is sent to the sender(s)

timeout list of timeouts

use_range_based_retransmitter Whether to use the old retransmitter which

retransmits individual messages or the new

one which uses ranges of retransmitted

messages. Default is true. Note that this

property will be removed in 3.0; it is only

used to switch back to the old (and proven)

retransmitter mechanism if issues occur

xmit_interval Interval (in milliseconds) at which missing

messages (from all retransmit buffers) are

retransmitted

xmit_table_automatic_purging If enabled, the removal of a message from

the retransmission table causes an automatic

purge (only for experts)

xmit_table_max_compaction_time Number of milliseconds after which the matrix

in the retransmission table is compacted (only

for experts)

UNICAST3

155

Name Description

xmit_table_msgs_per_row Number of elements of a row of the matrix in

the retransmission table (only for experts). The

capacity of the matrix is xmit_table_num_rows

* xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the

retransmission table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the

retransmission table (only for experts)

7.6.5. UNICAST3

UNICAST3 (available in 3.3) is the successor to UNICAST2, but is based on UNICAST, as it uses

a positive acknowledgment mechanism. However, speed wise it is similar to UNICAST2

Details of UNICAST3's design can be found here: UNICAST3 [https://github.com/belaban/

JGroups/blob/master/doc/design/UNICAST3.txt]

Table 7.31. Properties

Name Description

ack_batches_immediately Send an ack for a batch immediately instead of

using a delayed ack

ack_threshold Send an ack immediately when a batch of

ack_threshold (or more) messages is received.

Otherwise send delayed acks. If 1, ack single

messages (similar to UNICAST)

conn_close_timeout Time (in ms) until a connection marked to be

closed will get removed. 0 disables this

conn_expiry_timeout Time (in milliseconds) after which an idle

incoming or outgoing connection is closed. The

connection will get re-established when used

again. 0 disables connection reaping

log_not_found_msgs If true, trashes warnings about retransmission

messages not found in the xmit_table (used for

testing)

max_msg_batch_size Max number of messages to be removed from

a retransmit window. This property might get

removed anytime, so don't use it !

max_retransmit_time Max number of milliseconds we try to

retransmit a message to any given member.

After that, the connection is removed. Any new

https://github.com/belaban/JGroups/blob/master/doc/design/UNICAST3.txt
https://github.com/belaban/JGroups/blob/master/doc/design/UNICAST3.txt
https://github.com/belaban/JGroups/blob/master/doc/design/UNICAST3.txt

Chapter 7. List of Protocols

156

Name Description

connection to that member will start with seqno

#1 again. 0 disables this

xmit_interval Interval (in milliseconds) at which messages in

the send windows are resent

xmit_table_max_compaction_time Number of milliseconds after which the matrix

in the retransmission table is compacted (only

for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in

the retransmission table (only for experts). The

capacity of the matrix is xmit_table_num_rows

* xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the

retransmission table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the

retransmission table (only for experts)

7.6.6. RSVP

The RSVP protocol is not a reliable delivery protocol per se, but augments reliable protocols such

as NAKACK, UNICAST or UNICAST2. It should be placed somewhere above these in the stack.

Table 7.32. Properties

Name Description

ack_on_delivery When true, we pass the message up to the

application and only then send an ack. When

false, we send an ack first and only then pass

the message up to the application.

resend_interval Interval (in milliseconds) at which we resend

the RSVP request. Needs to be < timeout. 0

disables it.

throw_exception_on_timeout Whether an exception should be thrown when

the timeout kicks in, and we haven't yet

received all acks. An exception would be

thrown all the way up to JChannel.send()

timeout Max time in milliseconds to block for an

RSVP'ed message (0 blocks forever).

Message stability

157

7.7. Message stability

To serve potential retransmission requests, a member has to store received messages until it is

known that every member in the cluster has received them. Message stability for a given message

M means that M has been seen by everyone in the cluster.

The stability protocol periodically (or when a certain number of bytes have been received)

initiates a consensus protocol, which multicasts a stable message containing the highest message

numbers for a given member. This is called a digest.

When everyone has received everybody else's stable messages, a digest is computed which

consists of the minimum sequence numbers of all received digests so far. This is the stability

vector, and contain only message sequence numbers that have been seen by everyone.

This stability vector is the broadcast to the group and everyone can remove messages from their

retransmission tables whose sequence numbers are smaller than the ones received in the stability

vector. These messages can then be garbage collected.

7.7.1. STABLE

STABLE garbage collects messages that have been seen by all members of a cluster. Each

member has to store all messages because it may be asked to retransmit. Only when we are

sure that all members have seen a message can it be removed from the retransmission buffers.

STABLE periodically gossips its highest and lowest messages seen. The lowest value is used to

compute the min (all lowest seqnos for all members), and messages with a seqno below that min

can safely be discarded.

Note that STABLE can also be configured to run when N bytes have been received. This is

recommended when sending messages at a high rate, because sending stable messages based

on time might accumulate messages faster than STABLE can garbage collect them.

Table 7.33. Properties

Name Description

cap Max percentage of the max heap (-Xmx) to be

used for max_bytes. Only used if ergonomics

is enabled. 0 disables setting max_bytes

dynamically.

desired_avg_gossip Average time to send a STABLE message

max_bytes Maximum number of bytes received in all

messages before sending a STABLE message

is triggered

send_stable_msgs_to_coord_only Wether or not to send the STABLE messages

to all members of the cluster, or to the

current coordinator only. The latter reduces

Chapter 7. List of Protocols

158

Name Description

the number of STABLE messages, but also

generates more work on the coordinator

stability_delay Delay before stability message is sent

7.8. Group Membership

Group membership takes care of joining new members, handling leave requests by existing

members, and handling SUSPECT messages for crashed members, as emitted by failure

detection protocols. The algorithm for joining a new member is essentially:

- loop

- find initial members (discovery)

- if no responses:

 - become singleton group and break out of the loop

- else:

 - determine the coordinator (oldest member) from the responses

 - send JOIN request to coordinator

 - wait for JOIN response

 - if JOIN response received:

 - install view and break out of the loop

 - else

 - sleep for 5 seconds and continue the loop

7.8.1. pbcast.GMS

Table 7.34. Properties

Name Description

flushInvokerClass

handle_concurrent_startup Temporary switch. Default is true and should

not be changed

install_view_locally_first Whether or not to install a new view locally

first before broadcasting it (only done in coord

role). Set to true if a state transfer protocol is

detected

join_timeout Join timeout

leave_timeout Leave timeout

log_collect_msgs Logs failures for collecting all view acks if true

log_view_warnings Logs warnings for reception of views less than

the current, and for views which don't include

self

pbcast.GMS

159

Name Description

max_bundling_time Max view bundling timeout if view bundling is

turned on. Default is 50 msec

max_join_attempts Number of join attempts before we give up and

become a singleton. Zero means 'never give

up'.

membership_change_policy The fully qualified name of a class

implementing MembershipChangePolicy.

merge_timeout Timeout (in ms) to complete merge

num_prev_mbrs Max number of old members to keep in history.

Default is 50

num_prev_views Number of views to store in history

print_local_addr Print local address of this member after

connect. Default is true

print_physical_addrs Print physical address(es) on startup

resume_task_timeout Timeout to resume ViewHandler

use_delta_views If true, then GMS is allowed to send VIEW

messages with delta views, otherwise it always

sends full views. See https://issues.jboss.org/

browse/JGRP-1354 for details.

use_flush_if_present Use flush for view changes. Default is true

view_ack_collection_timeout Time in ms to wait for all VIEW acks (0 == wait

forever. Default is 2000 msec

view_bundling View bundling toggle

7.8.1.1. Joining a new member

Consider the following situation: a new member wants to join a group. The prodedure to do so is:

• Multicast an (unreliable) discovery request (ping)

• Wait for n responses or m milliseconds (whichever is first)

• Every member responds with the address of the coordinator

• If the initial responses are > 0: determine the coordinator and start the JOIN protocolg

• If the initial response are 0: become coordinator, assuming that no one else is out there

However, the problem is that the initial mcast discovery request might get lost, e.g. when multiple

members start at the same time, the outgoing network buffer might overflow, and the mcast

packet might get dropped. Nobody receives it and thus the sender will not receive any responses,

resulting in an initial membership of 0. This could result in multiple coordinators, and multiple

subgroups forming. How can we overcome this problem ? There are two solutions:

Chapter 7. List of Protocols

160

1. Increase the timeout, or number of responses received. This will only help if the reason of the

empty membership was a slow host. If the mcast packet was dropped, this solution won't help

2. Add the MERGE2 or MERGE3 protocol. This doesn't actually prevent multiple initial cordinators,

but rectifies the problem by merging different subgroups back into one. Note that this might

involve state merging which needs to be done by the application.

7.9. Flow control

Flow control takes care of adjusting the rate of a message sender to the rate of the slowest receiver

over time. If a sender continuously sends messages at a rate that is faster than the receiver(s), the

receivers will either queue up messages, or the messages will get discarded by the receiver(s),

triggering costly retransmissions. In addition, there is spurious traffic on the cluster, causing even

more retransmissions.

Flow control throttles the sender so the receivers are not overrun with messages.

Note that flow control can be bypassed by setting message flag Message.NO_FC. See

Section 5.13, “Tagging messages with flags” for details.

The properties for FlowControl are shown below and can be used in MFC and UFC:

Table 7.35. Properties

Name Description

ignore_synchronous_response Does not block a down message if it is a result

of handling an up message in thesame thread.

Fixes JGRP-928

max_block_time Max time (in milliseconds) to block. Default is

5000 msec

max_block_times Max times to block for the listed

messages sizes (Message.getLength()).

Example: "1000:10,5000:30,10000:500"

max_credits Max number of bytes to send per receiver until

an ack must be received to proceed

min_credits Computed as max_credits x min_theshold

unless explicitly set

min_threshold The threshold (as a percentage of

max_credits) at which a receiver sends more

credits to a sender. Example: if max_credits

is 1'000'000, and min_threshold 0.25, then we

send ca. 250'000 credits to P once we've got

only 250'000 credits left for P (we've received

750'000 bytes from P)

FC

161

7.9.1. FC

FC uses a credit based system, where each sender has max_credits credits and decrements

them whenever a message is sent. The sender blocks when the credits fall below 0, and only

resumes sending messages when it receives a replenishment message from the receivers.

The receivers maintain a table of credits for all senders and decrement the given sender's credits

as well, when a message is received.

When a sender's credits drops below a threshold, the receiver will send a replenishment message

to the sender. The threshold is defined by min_bytes or min_threshold.

Table 7.36. Properties

Name Description

ignore_synchronous_response Does not block a down message if it is a result

of handling an up message in thesame thread.

Fixes JGRP-928

max_block_time Max time (in milliseconds) to block. Default is

5000 msec

max_block_times Max times to block for the listed

messages sizes (Message.getLength()).

Example: "1000:10,5000:30,10000:500"

max_credits Max number of bytes to send per receiver until

an ack must be received to proceed. Default is

500000 bytes

min_credits Computed as max_credits x min_theshold

unless explicitly set

min_threshold The threshold (as a percentage of

max_credits) at which a receiver sends more

credits to a sender. Example: if max_credits

is 1'000'000, and min_threshold 0.25, then

we send ca. 250'000 credits to P once we've

received 250'000 bytes from P

Note

FC has been deprecated, use MFC and UFC instead.

7.9.2. MFC and UFC

In 2.10, FC was separated into MFC (Multicast Flow Control) and Unicast Flow Control (UFC).

The reason was that multicast flow control should not be impeded by unicast flow control, and

Chapter 7. List of Protocols

162

vice versa. Also, performance for the separate implementations could be increased, plus they can

be individually omitted. For example, if no unicast flow control is needed, UFC can be left out of

the stack configuration.

7.9.2.1. MFC

MFC has currently no properties other than those inherited by FlowControl (see above).

7.9.2.2. UFC

UFC has currently no properties other than those inherited by FlowControl (see above).

7.10. Fragmentation

7.10.1. FRAG and FRAG2

FRAG and FRAG2 fragment large messages into smaller ones, send the smaller ones, and at the

receiver side, the smaller fragments will get assembled into larger messages again, and delivered

to the application. FRAG and FRAG2 work for both unicast and multicast messages.

The difference between FRAG and FRAG2 is that FRAG2 does 1 less copy than FRAG, so it is the

recommended fragmentation protocol. FRAG serializes a message to know the exact size required

(including headers), whereas FRAG2 only fragments the payload (excluding the headers), so it

is faster.

The properties of FRAG2 are:

Table 7.37. Properties

Name Description

frag_size The max number of bytes in a message. Larger

messages will be fragmented

Contrary to FRAG, FRAG2 does not need to serialize a message in order to break it into smaller

fragments: it looks only at the message's buffer, which is a byte array anyway. We assume that

the size addition for headers and src and dest addresses is minimal when the transport finally has

to serialize the message, so we add a constant (by default 200 bytes). Because of the efficiency

gained by not having to serialize the message just to determine its size, FRAG2 is generally

recommended over FRAG.

7.11. Ordering

7.11.1. SEQUENCER

SEQUENCER provider total order for multicast (=group) messages by forwarding messages to

the current coordinator, which then sends the messages to the cluster on behalf of the original

Total Order Anycast (TOA)

163

sender. Because it is always the same sender (whose messages are delivered in FIFO order), a

global (or total) order is established.

Sending members add every forwarded message M to a buffer and remove M when they receive it.

Should the current coordinator crash, all buffered messages are forwarded to the new coordinator.

Table 7.38. Properties

Name Description

delivery_table_max_size Size of the set to store received seqnos (for

duplicate checking)

threshold Number of acks needed before going from ack-

mode to normal mode. 0 disables this, which

means that ack-mode is always on

7.11.2. Total Order Anycast (TOA)

A total order anycast is a totally ordered message sent to a subset of the cluster members. TOA

intercepts messages with an AnycastMessage (carrying a list of addresses) and handles sending

of the message in total order. Say the cluster is {A,B,C,D,E} and the Anycast is to {B,C}.

Skeen's algorithm is used to send the message: B and C each maintain a logical clock (a counter).

When a message is to be sent, TOA contacts B and C and asks them for their counters. B and C

return their counters (incrementing them for the next request).

The originator of the message then sets the message's ID to be the max of all returned counters

and sends the message. Receivers then deliver the messages in order of their IDs.

The main use of TOA is currently in Infinispan's transactional caches with partial replication: it is

used to apply transactional modifications in total order, so that no two-phase commit protocol has

to be run and no locks have to be acquired.

As shown in "Exploiting Total Order Multicast in Weakly Consistent Transactional Caches" [http://

www.cloudtm.eu/home/Publications], when we have many conflicts by different transactions

modifying the same keys, TOM fares better than 2PC.

Note that TOA is experimental (as of 3.1).

7.12. State Transfer

7.12.1. pbcast.STATE_TRANSFER

STATE_TRANSFER is the existing transfer protocol, which transfers byte[] buffers around.

However, at the state provider's side, JGroups creates an output stream over the byte[] buffer, and

passes the ouput stream to the getState(OutputStream) callback, and at the state requester's

side, an input stream is created and passed to the setState(InputStream) callback.

http://www.cloudtm.eu/home/Publications
http://www.cloudtm.eu/home/Publications
http://www.cloudtm.eu/home/Publications

Chapter 7. List of Protocols

164

This allows us to continue using STATE_TRANSFER, until the new state transfer protocols are

going to replace it (perhaps in 4.0).

In order to transfer application state to a joining member of a cluster, STATE_TRANSFER has to

load entire state into memory and send it to a joining member. The major limitation of this approach

is that for state transfers that are very large this would likely result in memory exhaustion.

For large state transfer use either the STATE or STATE_SOCK protocol. However, if the state is

small, STATE_TRANSFER is okay.

7.12.2. StreamingStateTransfer

StreamingStateTransfer is the superclass of STATE and STATE_SOCK (see below). Its

properties are:

Table 7.39. Properties

Name Description

buffer_size Size (in bytes) of the state transfer buffer

max_pool Maximum number of pool threads serving state

requests

pool_thread_keep_alive Keep alive for pool threads serving state

requests

7.12.3. pbcast.STATE

7.12.3.1. Overview

STATE was renamed from (2.x) STREAMING_STATE_TRANSFER, and refactored to extend

a common superclass StreamingStateTransfer. The other state transfer protocol extending

StreamingStateTransfer is STATE_SOCK (see Section 3.8.11.1.3, “STATE_SOCK”).

STATE uses a streaming approach to state transfer; the state provider writes its state to the output

stream passed to it in the getState(OutputStream) callback, which chunks the stream up into

chunks that are sent to the state requester in separate messages.

The state requester receives those chunks and feeds them into the input stream from which the

state is read by the setState(InputStream) callback.

The advantage compared to STATE_TRANSFER is that state provider and requester only need

small (transfer) buffers to keep a part of the state in memory, whereas STATE_TRANSFER needs

to copy the entire state into memory.

If we for example have a list of 1 million elements, then STATE_TRANSFER would have to create

a byte[] buffer out of it, and return the byte[] buffer, whereas a streaming approach could iterate

STATE_SOCK

165

through the list and write each list element to the output stream. Whenever the buffer capacity is

reached, we'd then send a message and the buffer would be reused to receive more data.

7.12.3.2. Configuration

STATE has currently no properties other than those inherited by StreamingStateTransfer (see

above).

7.12.4. STATE_SOCK

STATE_SOCK is also a streaming state transfer protocol, but compared to STATE, it doesn't

send the chunks as messages, but uses a TCP socket connection between state provider and

requester to transfer the state.

The state provider creates a server socket at a configurable bind address and port, and the

address and port are sent back to a state requester in the state response. The state requester

then establishes a socket connection to the server socket and passes the socket's input stream

to the setState(InputStream) callback.

7.12.4.1. Configuration

The configuration options of STATE_SOCK are listed below:

Table 7.40. Properties

Name Description

bind_addr The interface (NIC) used to accept state

requests. The following special values are

also recognized: GLOBAL, SITE_LOCAL,

LINK_LOCAL and NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by

this transport

bind_port The port listening for state requests. Default

value of 0 binds to any (ephemeral) port

external_addr Use "external_addr" if you have hosts on

different networks, behind firewalls. On each

firewall, set up a port forwarding rule

(sometimes called "virtual server") to the local

IP (e.g. 192.168.1.100) of the host then on

each host, set "external_addr" TCP transport

parameter to the external (public IP) address of

the firewall.

external_port Used to map the internal port (bind_port) to an

external port. Only used if > 0

Chapter 7. List of Protocols

166

7.12.5. BARRIER

BARRIER is used by some of the state transfer protocols, as it lets existing threads complete and

blocks new threads to get both the digest and state in one go.

In 3.1, a new mechanism for state transfer will be implemented, eliminating the need for BARRIER.

Until then, BARRIER should be used when one of the state transfer protocols is used. BARRIER

is part of every default stack which contains a state transfer protocol.

Table 7.41. Properties

Name Description

flush_timeout Max time (in ms) to wait until the threads which

passed the barrier before it was closed have

completed. If this time elapses, an exception

will be thrown and state transfer will fail. 0 =

wait forever

max_close_time Max time barrier can be closed. Default is

60000 ms

7.13. pbcast.FLUSH

Flushing forces group members to send all their pending messages prior to a certain event. The

process of flushing acquiesces the cluster so that state transfer or a join can be done. It is also

called the stop-the-world model as nobody will be able to send messages while a flush is in

process. Flush is used in:

• State transfer

When a member requests state transfer, it tells everyone to stop sending messages and waits

for everyone's ack. Then it have received everyone's asks, the application asks the coordinator

for its state and ships it back to the requester. After the requester has received and set the state

successfully, the requester tells everyone to resume sending messages.

• View changes (e.g.a join). Before installing a new view V2, flushing ensures that all messages

sent in the current view V1 are indeed delivered in V1, rather than in V2 (in all non-faulty

members). This is essentially Virtual Synchrony.

FLUSH is designed as another protocol positioned just below the channel, on top of the stack

(e.g. above STATE_TRANSFER). The STATE_TRANSFER and GMS protocols request a flush

by sending an event up the stack, where it is handled by the FLUSH protcol. Another event is sent

back by the FLUSH protocol to let the caller know that the flush has completed. When done (e.g.

view was installed or state transferred), the protocol sends a message, which will allow everyone

in the cluster to resume sending.

A channel is notified that the FLUSH phase has been started by the Receiver.block() callback.

Misc

167

Read more about flushing in Section 5.7, “Flushing: making sure every node in the cluster received

a message”.

Table 7.42. Properties

Name Description

bypass When set, FLUSH is bypassed, same effect as

if FLUSH wasn't in the config at all

enable_reconciliation Reconciliation phase toggle. Default is true

end_flush_timeout Timeout to wait for UNBLOCK after

STOP_FLUSH is issued. Default is 2000 msec

retry_timeout Retry timeout after an unsuccessful attempt to

quiet the cluster (first flush phase). Default is

3000 msec

start_flush_timeout Timeout (per atttempt) to quiet the cluster

during the first flush phase. Default is 2000

msec

timeout Max time to keep channel blocked in flush.

Default is 8000 msec

7.14. Misc

7.14.1. Statistics

STATS exposes various statistics, e.g. number of received multicast and unicast messages,

number of bytes sent etc. It should be placed directly over the transport

7.14.2. Security

JGroups provides protocols to encrypt cluster traffic (ENCRYPT), and to make sure that only

authorized members can join a cluster (AUTH and SASL).

7.14.2.1. ENCRYPT

A detailed description of ENCRYPT is found in the JGroups source (JGroups/doc/

ENCRYPT.html). Encryption by default only encrypts the message body, but doesn't encrypt

message headers. To encrypt the entire message (including all headers, plus destination and

source addresses), the property encrypt_entire_message has to be set to true. Also, ENCRYPT

has to be below any protocols whose headers we want to encrypt, e.g.

<config ... >

 <UDP />

 <PING />

Chapter 7. List of Protocols

168

 <MERGE2 />

 <FD />

 <VERIFY_SUSPECT />

 <pbcast.NAKACK />

 <UNICAST />

 <pbcast.STABLE />

 <FRAG2 />

 <pbcast.GMS />

 <ENCRYPT encrypt_entire_message="false"

 sym_init="128" sym_algorithm="AES/ECB/PKCS5Padding"

 asym_init="512" asym_algorithm="RSA"/>

</config>

Note that ENCRYPT sits below NAKACK and UNICAST, so the sequence numbers for these 2

protocols will be encrypted. Had ENCRYPT been placed below UNICAST but above NAKACK,

then only UNICAST's headers (including sequence numbers) would have been encrypted, but

not NAKACKs.

Note that it doesn't make too much sense to place ENCRYPT even lower in the stack, because

then almost all traffic (even merge or discovery traffic) will be encrypted, which may be somewhat

of a performance drag.

When we encrypt an entire message, we have to marshal the message into a byte buffer first

and then encrypt it. This entails marshalling and copying of the byte buffer, which is not so good

performance wise...

7.14.2.1.1. Using a key store

ENCRYPT uses store type JCEKS (for details between JKS and JCEKS see here), however

keytool uses JKS, therefore a keystore generated with keytool will not be accessible.

To generate a keystore compatible with JCEKS, use the following command line options to keytool:

keytool -genseckey -alias myKey -keypass changeit -storepass changeit -

keyalg Blowfish -keysize 56 -keystore defaultStore.keystore -storetype

 JCEKS

ENCRYPT could then be configured as follows:

<ENCRYPT key_store_name="defaultStore.keystore"

 store_password="changeit"

 alias="myKey"/>

Security

169

Note that defaultStore.keystore will have to be found in the claspath.

Note

If asymmetric encryption is used (no shared key via keystore), ENCRYPT has to

be placed somewhere above GMS, or else the JOIN process would not function

(as the JOIN response would get dropped).

Table 7.43. Properties

Name Description

alias Alias used for recovering the key. Change the

default

asymAlgorithm Cipher engine transformation for asymmetric

algorithm. Default is RSA

asymInit Initial public/private key length. Default is 512

asymProvider Cryptographic Service Provider. Default is

Bouncy Castle Provider

changeKeysOnViewChange Generate new symmetric keys on every view

change. Default is false

cipher_pool_size Number of ciphers in the pool to parallelize

encrypt and decrypt requests

encrypt_entire_message

keyPassword Password for recovering the key. Change the

default

keyStoreName File on classpath that contains keystore

repository

storePassword Password used to check the integrity/unlock

the keystore. Change the default

symAlgorithm Cipher engine transformation for symmetric

algorithm. Default is AES

symInit Initial key length for matching symmetric

algorithm. Default is 128

symProvider Cryptographic Service Provider. Default is

Bouncy Castle Provider

7.14.2.2. AUTH

AUTH is used to provide a layer of authentication to JGroups. This allows you to define pluggable

security that defines if a node should be allowed to join a cluster. AUTH sits below the GMS

Chapter 7. List of Protocols

170

protocol and listens for JOIN REQUEST messages. When a JOIN REQUEST is received it tries to

find an AuthHeader object, inside of which should be an implementation of the AuthToken object.

AuthToken is an abstract class, implementations of which are responsible for providing the

actual authentication mechanism. Some basic implementations of AuthToken are provide in

the org.jgroups.auth package (SimpleToken, MD5Token and X509Token). Effectivly all these

implementations do is encrypt a string (found in the jgroups config) and pass that on the JOIN

REQUEST.

When authentication is successful, the message is simply passed up the stack to the GMS

protocol. When it fails, the AUTH protocol creates a JOIN RESPONSE message with a failure

string and passes it back down the stack. This failure string informs the client of the reason for

failure. Clients will then fail to join the group and will throw a SecurityException. If this error string

is null then authentication is considered to have passed.

For more information refer to the wiki at http://community.jboss.org/wiki/JGroupsAUTH.

Table 7.44. Properties

Name Description

auth_class n/a

authenticate_coord n/a

7.14.2.3. SASL

SASL is an alternative to the AUTH protocol which provides a layer of authentication to JGroups

by allowing the use of one of the SASL mechanisms made available by the JDK. SASL sits

below the GMS protocol and listens for JOIN / MERGE REQUEST messages. When a JOIN /

MERGE REQUEST is received it tries to find a SaslHeader object which contains the initial

response required by the chosen SASL mech. This initiates a sequence of challenge/response

messages which, if successful, culminates in allowing the new node to join the cluster. The actual

validation logic required by the SASL mech must be provided by the user in the form of a standard

javax.security.auth.CallbackHandler implementation.

When authentication is successful, the message is simply passed up the stack to the GMS

protocol. When it fails, the SASL protocol creates a JOIN / MERGE RESPONSE message with a

failure string and passes it back down the stack. This failure string informs the client of the reason

for failure. Clients will then fail to join the group and will throw a SecurityException. If this error

string is null then authentication is considered to have passed.

SASL can be (minimally) configured as follows:

<config ... >

 <UDP />

 <PING />

http://community.jboss.org/wiki/JGroupsAUTH

Security

171

 <pbcast.NAKACK />

 <UNICAST3 />

 <pbcast.STABLE />

 <SASL mech="DIGEST-MD5"

 client_callback_handler="org.example.ClientCallbackHandler"

 server_callback_handler="org.example.ServerCallbackHandler"/>

 <pbcast.GMS />

</config>

The mech property specifies the SASL mech you want to use, as defined by RFC-4422. You will

also need to provide two callback handlers, one used when the node is running as coordinator

(server_callback_handler) and one used in all other cases (client_callback_handler).

Refer to the JDK's SASL reference guide for more details: http://docs.oracle.com/javase/7/docs/

technotes/guides/security/sasl/sasl-refguide.html

Table 7.45. Properties

Name Description

client_callback_handler The CallbackHandler to use when a node acts

as a client (i.e. it is not the coordinator

client_callback_handler_class n/a

client_name The name to use when a node is acting as a

client (i.e. it is not the coordinator. Will also be

used to obtain the subject if using a JAAS login

module

client_password The password to use when a node is acting as

a client (i.e. it is not the coordinator. Will also

be used to obtain the subject if using a JAAS

login module

login_module_name The name of the JAAS login module to use to

obtain a subject for creating the SASL client

and server (optional). Only required by some

SASL mechs (e.g. GSSAPI)

mech The name of the mech to require for

authentication. Can be any mech supported

by your local SASL provider. The JDK comes

standard with CRAM-MD5, DIGEST-MD5,

GSSAPI, NTLM

sasl_props Properties specific to the chosen mech

server_callback_handler The CallbackHandler to use when a node acts

as a server (i.e. it is the coordinator

http://docs.oracle.com/javase/7/docs/technotes/guides/security/sasl/sasl-refguide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/sasl/sasl-refguide.html

Chapter 7. List of Protocols

172

Name Description

server_callback_handler_class n/a

server_name The fully qualified server name

timeout How long to wait (in ms) for a response to a

challenge

7.14.3. COMPRESS

COMPRESS compresses messages larger than min_size, and uncompresses them at the

receiver's side. Property compression_level determines how thorough the compression algorith

should be (0: no compression, 9: highest compression).

Table 7.46. Properties

Name Description

compression_level Compression level (from java.util.zip.Deflater)

(0=no compression, 1=best speed, 9=best

compression). Default is 9

min_size Minimal payload size of a message (in bytes)

for compression to kick in. Default is 500 bytes

pool_size Number of inflaters/deflaters for concurrent

processing. Default is 2

7.14.4. SCOPE

As discussed in Section 5.4.4, “Scopes: concurrent message delivery for messages from the same

sender”, the SCOPE protocol is used to deliver updates to different scopes concurrently. It has to

be placed somewhere above UNICAST and NAKACK.

SCOPE has a separate thread pool. The reason why the default thread pool from the transport

wasn't used is that the default thread pool has a different purpose. For example, it can use a

queue to which all incoming messages are added, which would defy the purpose of concurrent

delivery in SCOPE. As a matter of fact, using a queue would most likely delay messages get sent

up into SCOPE !

Also, the default pool's rejection policy might not be "run", so the SCOPE implementation would

have to catch rejection exceptions and engage in a retry protocol, which is complex and wastes

resources.

The configuration of the thread pool is shown below. If you expect concurrent messages to N

different scopes, then the max pool size would ideally be set to N. However, in most cases, this

is not necessary as (a) the messages might not be to different scopes or (b) not all N scopes

might get messages at the same time. So even if the max pool size is a bit smaller, the cost of this

is slight delays, in the sense that a message for scope Y might wait until the thread processing

message for scope X is available.

RELAY

173

To remove unused scopes, an expiry policy is provided: expiration_time is the number of

milliseconds after which an idle scope is removed. An idle scope is a scope which hasn't seen

any messages for expiration_time milliseconds. The expiration_interval value defines the number

of milliseconds at which the expiry task runs. Setting both values to 0 disables expiration; it would

then have to be done manually (see Section 5.4.4, “Scopes: concurrent message delivery for

messages from the same sender” for details).

Table 7.47. Properties

Name Description

expiration_interval Interval in milliseconds at which the expiry task

tries to remove expired scopes

expiration_time Time in milliseconds after which an expired

scope will get removed. An expired scope is

one to which no messages have been added

in max_expiration_time milliseconds. 0 never

expires scopes

thread_naming_pattern Thread naming pattern for threads in this

channel. Default is cl

thread_pool.keep_alive_time Timeout in milliseconds to remove idle thread

from regular pool

thread_pool.max_threads Maximum thread pool size for the regular

thread pool

thread_pool.min_threads Minimum thread pool size for the regular thread

pool

7.14.5. RELAY

RELAY bridges traffic between seperate clusters, see Section 5.10, “Bridging between remote

clusters” for details.

Table 7.48. Properties

Name Description

bridge_name Name of the bridge cluster

bridge_props Properties of the bridge cluster (e.g. tcp.xml)

present_global_views Drops views received from below and instead

generates global views and passes them up.

A global view consists of the local view and

the remote view, ordered by view ID. If true, no

protocolwhich requires (local) views can sit on

top of RELAY

Chapter 7. List of Protocols

174

Name Description

relay If set to false, don't perform relaying. Used e.g.

for backup clusters; unidirectional replication

from one cluster to another, but not back. Can

be changed at runtime

site Description of the local cluster, e.g. "nyc". This

is added to every address, so itshould be short.

This is a mandatory property and must be set

7.14.6. RELAY2

RELAY2 provides clustering between different sites (local clusters), for multicast and unicast

messages. See Section 5.11, “Relaying between multiple sites (RELAY2)” for details.

Table 7.49. Properties

Name Description

async_relay_creation If true, the creation of the relay channel (and

the connect()) are done in the background.

Async relay creation is recommended, so the

view callback won't be blocked

can_become_site_master Whether or not this node can become the

site master. If false, and we become the

coordinator, we won't start the bridge(s)

can_forward_local_cluster If true, a site master forwards messages

received from other sites to randomly chosen

members of the local site for load balancing,

reducing work for itself

config Name of the relay configuration

enable_address_tagging Whether or not we generate our

own addresses in which we use

can_become_site_master. If this property is

false, can_become_site_master is ignored

max_site_masters Maximum number of site masters. Setting this

to a value greater than 1 means that we

can have multiple site masters. If the value

is greater than the number of cluster nodes,

everyone in the site will be a site master (and

thus join the global cluster

relay_multicasts Whether or not to relay multicast (dest=null)

messages

STOMP

175

Name Description

site Name of the site (needs to be defined in the

configuration)

warn_when_ftc_missing If true, logs a warning if the

FORWARD_TO_COORD protocol is not

found. This property might get deprecated

soon

7.14.7. STOMP

STOMP is discussed in Section 5.9, “STOMP support”. The properties for it are shown below:

Table 7.50. Properties

Name Description

bind_addr The bind address which should be used by

the server socket. The following special values

are also recognized: GLOBAL, SITE_LOCAL,

LINK_LOCAL and NON_LOOPBACK

endpoint_addr If set, then endpoint will be set to this address

exact_destination_match If set to false, then a destination of /a/b match /

a/b/c, a/b/d, a/b/c/d etc

forward_non_client_generated_msgs Forward received messages which don't have

a StompHeader to clients

port Port on which the STOMP protocol listens for

requests

send_info If true, information such as a list of endpoints,

or views, will be sent to all clients (via the INFO

command). This allows for example intelligent

clients to connect to a different server should a

connection be closed.

7.14.8. DAISYCHAIN

The DAISYCHAIN protocol is discussed in Section 5.12, “Daisychaining”.

Table 7.51. Properties (experimental)

Name Description

forward_queue_size The number of messages in the forward queue.

This queue is used to host messages that need

to be forwarded by us on behalf of our neighbor

loopback Loop back multicast messages

Chapter 7. List of Protocols

176

Name Description

send_queue_size The number of messages in the send queue.

This queue is used to host messages that need

to be sent

7.14.9. RATE_LIMITER

RATE_LIMITER can be used to set a limit on the data sent per time unit. When sending

data, only max_bytes can be sent per time_period milliseconds. E.g. if max_bytes="50M" and

time_period="1000", then a sender can only send 50MBytes / sec max.

Table 7.52. Properties (experimental)

Name Description

max_bytes Max number of bytes to be sent in time_period

ms. Blocks the sender if exceeded until a new

time period has started

time_period Number of milliseconds during which

max_bytes bytes can be sent

7.14.10. Locking protocols

There are currently 2 locking protocols: org.jgroups.protocols.CENTRAL_LOCK and

org.jgroups.protocols.PEER_LOCK. Both extend Locking, which has the following properties:

Table 7.53. Properties

Name Description

bypass_bundling bypasses message bundling if set

lock_striping_size Number of locks to be used for lock striping

(for synchronized access to the server_lock

entries)

7.14.10.1. CENTRAL_LOCK

CENTRAL_LOCK has the current coordinator of a cluster grants locks, so every node has to

communicate with the coordinator to acquire or release a lock. Lock requests by different nodes

for the same lock are processed in the order in which they are received.

A coordinator maintains a lock table. To prevent losing the knowledge of who holds which locks,

the coordinator can push lock information to a number of backups defined by num_backups. If

num_backups is 0, no replication of lock information happens. If num_backups is greater than 0,

then the coordinator pushes information about acquired and released locks to all backup nodes.

Topology changes might create new backup nodes, and lock information is pushed to those on

becoming a new backup node.

CENTRAL_EXECUTOR

177

The advantage of CENTRAL_LOCK is that all lock requests are granted in the same order across

the cluster, which is not the case with PEER_LOCK.

Table 7.54. Properties

Name Description

num_backups Number of backups to the coordinator. Server

locks get replicated to these nodes as well

7.14.10.2. PEER_LOCK

PEER_LOCK acquires a lock by contacting all cluster nodes, and lock acquisition is only

successful if all non-faulty cluster nodes (peers) grant it.

Unless a total order configuration is used (e.g. org.jgroups.protocols.SEQUENCER based), lock

requests for the same resource from different senders may be received in different order, so

deadlocks can occur. Example:

• Nodes A and B

• A and B call lock(X) at the same time

• A receives L(X,A) followed by L(X,B): locks X(A), queues L(X,B)

• B receives L(X,B) followed by L(X,A): locks X(B), queues L(X,A)

To acquire a lock, we need lock grants from both A and B, but this will never

happen here. To fix this, either add SEQUENCER to the configuration, so that all

lock requests are received in the same global order at both A and B, or use

java.util.concurrent.locks.Lock.tryLock(long,javaTimeUnit) with retries if a lock cannot be

acquired.

7.14.11. CENTRAL_EXECUTOR

CENTRAL_EXECUTOR is an implementation of Executing which is needed by the

ExecutionService.

Table 7.55. Properties

Name Description

bypass_bundling bypasses message bundling if set

Table 7.56. Properties

Name Description

num_backups Number of backups to the coordinator. Queue

State gets replicated to these nodes as well

Chapter 7. List of Protocols

178

7.14.12. COUNTER

COUNTER is the implementation of cluster wide counters, used by the CounterService.

Table 7.57. Properties

Name Description

bypass_bundling Bypasses message bundling if true

num_backups Number of backup coordinators. Modifications

are asynchronously sent to all backup

coordinators

reconciliation_timeout Number of milliseconds to wait for

reconciliation responses from all current

members

timeout Request timeouts (in ms). If the timeout

elapses, a Timeout (runtime) exception will be

thrown

7.14.13. SUPERVISOR

SUPERVISOR is a protocol which runs rules which periodically (or event triggered)

check conditions and take corrective action if a condition is not met. Example:

org.jgroups.protocols.rules.CheckFDMonitor is a rule which periodically checks if FD's monitor

task is running when the cluster size is > 1. If not, the monitor task is started.

The SUPERVISOR is explained in more detail in Section 5.16, “Supervising a running stack”

Table 7.58. Properties

Name Description

config Location of an XML file listing the rules to be

installed

7.14.14. FORK

FORK allows ForkChannels to piggy-back messages on a regular channel. Needs to be placed

towards the top of the stack. See Section 5.19, “ForkChannels: light-weight channels to piggy-

back messages over an existing channel” for details.

Table 7.59. Properties

Name Description

config Points to an XML file defining the fork-stacks,

which will be created at initialization. Ignored if

null

	Reliable group communication with JGroups 3.x
	Table of Contents
	Preface
	Chapter 1. Overview
	1.1. Channel
	1.2. Building Blocks
	1.3. The Protocol Stack

	Chapter 2. Installation and Configuration
	2.1. Requirements
	2.2. Structure of the source version
	2.3. Building JGroups (source distribution only)
	2.4. Logging
	2.4.1. log4j2
	2.4.2. log4j
	2.4.3. JDK logging (JUL)
	2.4.4. Support for custom logging frameworks

	2.5. Testing your Setup
	2.6. Running a Demo Program
	2.7. Using IP Multicasting without a network connection
	2.8. It doesn't work !
	2.9. Problems with IPv6
	2.10. Wiki
	2.11. I have discovered a bug !
	2.12. Supported classes
	2.12.1. Experimental
	2.12.2. Unsupported

	Chapter 3. API
	3.1. Utility classes
	3.1.1. objectToByteBuffer(), objectFromByteBuffer()
	3.1.2. objectToStream(), objectFromStream()

	3.2. Interfaces
	3.2.1. MessageListener
	3.2.2. MembershipListener
	3.2.3. Receiver
	3.2.4. ReceiverAdapter
	3.2.5. ChannelListener

	3.3. Address
	3.4. Message
	3.5. Header
	3.6. Event
	3.7. View
	3.7.1. ViewId
	3.7.2. MergeView

	3.8. JChannel
	3.8.1. Creating a channel
	3.8.1.1. Programmatic creation

	3.8.2. Giving the channel a logical name
	3.8.3. Generating custom addresses
	3.8.4. Joining a cluster
	3.8.5. Joining a cluster and getting the state in one operation
	3.8.6. Getting the local address and the cluster name
	3.8.7. Getting the current view
	3.8.8. Sending messages
	3.8.8.1. Discarding one's own messages
	3.8.8.2. Synchronous messages

	3.8.9. Receiving messages
	3.8.10. Receiving view changes
	3.8.11. Getting the group's state
	3.8.11.1. State transfer protocols
	3.8.11.1.1. STATE_TRANSFER
	3.8.11.1.2. STATE
	3.8.11.1.3. STATE_SOCK

	3.8.12. Disconnecting from a channel
	3.8.13. Closing a channel

	Chapter 4. Building Blocks
	4.1. MessageDispatcher
	4.1.1. RequestOptions
	4.1.2. Requests and target destinations
	4.1.3. Example

	4.2. RpcDispatcher
	4.2.1. Example
	4.2.1.1. Asynchronous calls with futures

	4.2.2. Response filters

	4.3. Asynchronous invocation in MessageDispatcher and RpcDispatcher
	4.4. ReplicatedHashMap
	4.5. ReplCache
	4.6. Cluster wide locking
	4.6.1. Locking and merges

	4.7. Cluster wide task execution
	4.8. Cluster wide atomic counters
	4.8.1. Design

	Chapter 5. Advanced Concepts
	5.1. Using multiple channels
	5.2. Sharing a transport between multiple channels in a JVM
	5.3. Transport protocols
	5.3.1. Message bundling
	5.3.1.1. Message bundling and performance

	5.3.2. UDP
	5.3.2.1. Using UDP and plain IP multicasting
	5.3.2.2. Using UDP without IP multicasting

	5.3.3. TCP
	5.3.3.1. Using TCP and TCPPING
	5.3.3.2. Using TCP and TCPGOSSIP

	5.3.4. TUNNEL

	5.4. The concurrent stack
	5.4.1. Overview
	5.4.1.1. Configuration

	5.4.2. Elimination of up and down threads
	5.4.3. Concurrent message delivery
	5.4.4. Scopes: concurrent message delivery for messages from the same sender
	5.4.5. Out-of-band messages
	5.4.6. Replacing the default and OOB thread pools
	5.4.7. Sharing of thread pools between channels in the same JVM

	5.5. Using a custom socket factory
	5.6. Handling network partitions
	5.6.1. Merging substates
	5.6.2. The primary partition approach
	5.6.3. The Split Brain syndrome and primary partitions

	5.7. Flushing: making sure every node in the cluster received a message
	5.8. Large clusters
	5.8.1. Reducing chattiness
	5.8.1.1. Failure detection protocols
	5.8.1.1.1. FD_SOCK
	5.8.1.1.2. FD
	5.8.1.1.3. FD_ALL

	5.9. STOMP support
	5.10. Bridging between remote clusters
	5.10.1. Views
	5.10.2. Configuration

	5.11. Relaying between multiple sites (RELAY2)
	5.11.1. Relaying of multicasts
	5.11.2. Relaying of unicasts
	5.11.3. Invoking RPCs across sites
	5.11.4. Configuration

	5.12. Daisychaining
	5.12.1. Traditional N-1 approach
	5.12.2. Daisychaining approach
	5.12.3. Switch usage
	5.12.4. Performance
	5.12.5. Configuration

	5.13. Tagging messages with flags
	5.14. Performance tests
	5.14.1. MPerf

	5.15. Ergonomics
	5.16. Supervising a running stack
	5.17. Probe
	5.18. Determining the coordinator and controlling view generation
	5.19. ForkChannels: light-weight channels to piggy-back messages over an existing channel
	5.19.1. Configuration
	5.19.2. Creation of fork channels

	Chapter 6. Writing protocols
	6.1. Writing user defined headers

	Chapter 7. List of Protocols
	7.1. Properties availabe in every protocol
	7.2. Transport
	7.2.1. UDP
	7.2.2. TCP
	7.2.3. TUNNEL

	7.3. Initial membership discovery
	7.3.1. Discovery
	7.3.1.1. Discovery and local caches

	7.3.2. PING
	7.3.3. TCPPING
	7.3.4. TCPGOSSIP
	7.3.5. MPING
	7.3.6. FILE_PING
	7.3.6.1. Configuration with a preconfigured bootstrap file

	7.3.7. JDBC_PING
	7.3.8. BPING
	7.3.9. RACKSPACE_PING
	7.3.10. S3_PING
	7.3.11. GOOGLE_PING
	7.3.12. SWIFT_PING
	7.3.13. AWS_PING
	7.3.14. PDC - Persistent Discovery Cache

	7.4. Merging after a network partition
	7.4.1. MERGE2
	7.4.2. MERGE3

	7.5. Failure Detection
	7.5.1. FD
	7.5.2. FD_ALL
	7.5.3. FD_ALL2
	7.5.4. FD_SOCK
	7.5.5. FD_PING
	7.5.6. FD_HOST
	7.5.7. VERIFY_SUSPECT

	7.6. Reliable message transmission
	7.6.1. pbcast.NAKACK
	7.6.2. NAKACK2
	7.6.3. UNICAST
	7.6.4. UNICAST2
	7.6.5. UNICAST3
	7.6.6. RSVP

	7.7. Message stability
	7.7.1. STABLE

	7.8. Group Membership
	7.8.1. pbcast.GMS
	7.8.1.1. Joining a new member

	7.9. Flow control
	7.9.1. FC
	7.9.2. MFC and UFC
	7.9.2.1. MFC
	7.9.2.2. UFC

	7.10. Fragmentation
	7.10.1. FRAG and FRAG2

	7.11. Ordering
	7.11.1. SEQUENCER
	7.11.2. Total Order Anycast (TOA)

	7.12. State Transfer
	7.12.1. pbcast.STATE_TRANSFER
	7.12.2. StreamingStateTransfer
	7.12.3. pbcast.STATE
	7.12.3.1. Overview
	7.12.3.2. Configuration

	7.12.4. STATE_SOCK
	7.12.4.1. Configuration

	7.12.5. BARRIER

	7.13. pbcast.FLUSH
	7.14. Misc
	7.14.1. Statistics
	7.14.2. Security
	7.14.2.1. ENCRYPT
	7.14.2.1.1. Using a key store

	7.14.2.2. AUTH
	7.14.2.3. SASL

	7.14.3. COMPRESS
	7.14.4. SCOPE
	7.14.5. RELAY
	7.14.6. RELAY2
	7.14.7. STOMP
	7.14.8. DAISYCHAIN
	7.14.9. RATE_LIMITER
	7.14.10. Locking protocols
	7.14.10.1. CENTRAL_LOCK
	7.14.10.2. PEER_LOCK

	7.14.11. CENTRAL_EXECUTOR
	7.14.12. COUNTER
	7.14.13. SUPERVISOR
	7.14.14. FORK

