
A simple clustered task distribution system

Bela Ban
Sept 2008

This article will introduce the basic concepts of JGroups ([1]) and then implement a task distribution 
system (on top of JGroups), where tasks can be placed into the cluster and are executed by worker 
nodes. 

I'll show that worker nodes can be added at run time to add more processing power, or taken down 
when we don't have much load. Plus, tasks assigned to workers who subsequently crash are 
automatically reassigned to live nodes.

We could have implemented this with JMS queues. However, when we have a lot of load, the JMS 
server tends to become the bottleneck. In our decentralized solution, every node in the cluster can be 
both a master (who submits tasks) and a slave (who executes the tasks and returns the results).

JGroups

Overview

JGroups is a clustering library. Applications can use JGroups to join a cluster, send messages to the 
cluster nodes, get notifications when other nodes join or leave (including crashes), and leave a cluster.

Its task is the reliable sending of messages within a cluster. Its scope is much smaller than JMS; 
JGroups doesn't know about queues, topics and transactions, but only about message sending.

The main feature of JGroups is the protocol stack and the resulting configuration flexibility. 
Applications can pick the properties they would like in a cluster by simply editing an XML file. 

For example, an application can add compression by simply adding the COMPRESS protocol to the 
configuration. 

Or it can remove fragmentation because its messages will always be smaller than 65K (over UDP), or 
because it uses TCP as transport. 

Another application might add encryption and authentication, so messages are encrypted and only 
nodes which present a valid X.509 certificate can join the cluster.

Applications are even free to write their own protocols (or extend an existing one), and add them to the 
configuration. It might be useful for example, to add a protocol which keeps track of all messages sent 
and received over a cluster, for auditing or statistics purposes.

The architecture of JGroups is shown in fig. 1.

The main API for clients is a Channel (see below) which is used to send and receive messages. When a 
message is sent, it is passed down the protocol stack. The stack is a list of protocols, and each protocol 
gets a chance to do something with the message.

For example, a fragmentation protocol might check the size of the message. If the message is greater 
than the configured size, it might fragment it into multiple smaller messages and send those down the 

http://www.jgroups.org/


stack.

On the receive side, the fragmentation protocol would queue the fragments, until all have been 
received, then assemble them into the original message and pass it up.

The protocols shipped with JGroups can be divided into the following categories:

● Transport: sending and receiving of messages. UDP uses IP multicasting and/or UDP 
datagrams. TCP uses TCP connections.

● Discovery: initial discovery of nodes

● Merging: after a network partition heals, this merges the sub-clusters back into one

● Failure detection: monitoring of cluster nodes and notifications of potential crashes or hangs

● Reliable delivery: makes sure a message is not lost, received only once, and received in the 
order in which a sender sent it. This is done through assigning sequence numbers to each 
message and through retransmission in case of a missing message.

● Stability: nodes have to buffer all messages (for potential retransmission). The stability protocol 
makes sure that periodically (or based on accumulated size), messages that have been received 
by all cluster nodes are purged so they can be garbage collected.

● Group membership: keeps track of the nodes in a cluster, and notifies the application of node 
joins and leaves (including crashes)

● Flow control: makes sure that a sender cannot send messages faster than the receivers can 

Illustration 1: JGroups architecture

STATE

COMPRESS

FLOW

NAKACK

FRAG

UDP

Channel

Clients

Network

send receive

STATE

COMPRESS

FLOW

NAKACK

FRAG

UDP

Channel

Clients

send receive



process them, over a longer time. This is necessary to prevent out-of-memory situations. Flow 
control is a counter part to stability.

● Fragmentation: fragments large messages into smaller ones and re-assembles them at the 
receivers

● State transfer: makes sure that the shared state of a cluster (e.g. all HTTP sessions) is transferred 
correctly to a new node

● Compression: compresses messages and uncompresses them at the receivers

● Encryption: encrypts messages

● Authentication: prevents unauthorized node from joining a cluster

API

The main API is org.jgroups.JChannel:

public  class  JChannel  extends  Channel  {
    public  JChannel(String  properties)  throws  ChannelException;
    public  void  setReceiver(Receiver  r);
    public  void  connect(String  cluster_name)  throws  ChannelException;
    public  void  send(Message  msg)  throws  ChannelException;
    public  View  getView();
    public  Address  getLocalAddress();
    public  void  disconnect();
    public  void  close();
}

We join a cluster by creating a channel and calling connect():

Channel ch=new JChannel(“/home/bela/udp.xml”);
ch.setReceiver(new  ReceiverAdapter()  {
    public  void  receive(Message  msg)  {}
} ) ;
ch.connect(“demo-cluster”);

This creates a channel with a protocol stack defined in /home/bela/udp.xml. If an application needs 
different properties, it would modify udp.xml and pass the modified XML file to the constructor.
Then we set a Receiver, which has callbacks that are invoked when messages are received. Finally, we 
join cluster “demo-cluster”. All channels with the same configuration and the same cluster name 
(argument of connect()) will join the same cluster.
A node can send and receive messages once it has joined a cluster.
The Receiver interface has 2 methods we're interested in:

void  receive(Message  msg);
void  viewAccepted(View  new_view);

The receive() callback is invoked whenever a message is received1. Its argument is an 

1 Note that receive() can be invoked concurrently, when we receive messages from different senders. It therefore needs to  



org.jgroups.Message:

public  class  Message  implements  Streamable  {
    protected  Address  dest_addr=null;
    protected  Address  src_addr=null;
    private  byte[]     buf=null;

    public  byte[]  getBuffer();
    public  void  setBuffer(byte[]  b);
}

A message has the address of the destination (dest_addr) and sender (src_addr) and a payload (buf). An 
Address is an opaque class identifying a node uniquely within a cluster2. A destination address of null 
means that the message is to be sent to all cluster nodes (a multicast), a non-null destination address 
means to send the message to a single receiver (a unicast).
When receiving a message, the application can call getBuffer() to retrieve the byte[] buffer and then 
unmarshal it into data meaningful to the application.

The viewAccepted() callback is invoked when a node joins or leaves. Its only parameter is a View, 
which is essentially a list of addresses. Views are received by all cluster nodes in exactly the same 
order, so when we have a cluster {A,B,C}, then the nodes have the following views:

● A: {A,B,C}
● B: {A,B,C}
● C: {A,B,C}

If we had a new node D joining, then the view would become {A,B,C,D}. If B crashed, then everyone 
would install {A,C,D}. As we can see, the nodes in a view are ordered according to join time.
The oldest node is always first.
The current view can also be retrieved from a channel by calling Channel.getView().

Let's now discuss the remaining methods of JChannel.

The send() method takes a Message and sends it to all cluster nodes if the message's destination is null, 
or to a single node if the destination is non-null. The application needs to marshal their data to a byte[]  
buffer and set place it into the message via Message.setBuffer().

To retrieve the current view, we can use Channel.getView() and to fetch the local address of a node, we 
call Channel.getLocalAddress().

The disconnect() method leaves a cluster and close() destroys the channel. A closed channel cannot be 
opened again. Invoking close() also disconnects a channel if not already disconnected.
Calling disconnect() will install a new view in all cluster nodes, and viewAccepted() will be invoked in 
all receivers.

As we will see in building our task distribution system, the use of JGroups allows us to focus on the 
system at hand, and not have to worry about clustering issues, as JGroups does the heavy lifting. The 
main features used in our system are membership management (we need to know who the cluster nodes 
are, and when a node joins or leaves) and reliable messaging (for task sending). Plus, by modifying the 
protocol configuration, we can adapt the transport to our needs.

be reentrant.
2 In JGroups, it is the IP address and port of a node by default



Task distribution system

The idea is very simple: we have a cluster of nodes, and each node can submit tasks to be executed by 
some other node in the cluster. So every node is a peer, in the sense that it can both submit and handle 
tasks. In a real life application, clients would connect to any of the nodes, e.g. via TCP or RMI, and 
submit tasks to that node, which would then distribute it to some other node (or handle it itself).

When submitting a task, we choose a random integer which is then mapped to the rank of a node in the 
cluster (int mod N where N is the cluster size). The rank is the position of a node in the view, and since 
the view is the same in all nodes, the rank identifies the node uniquely.

The task is then multicast (EXECUTE) across the cluster. Every node adds the task to a hash map 
consisting of tasks and their submitters' (JGroups) addresses.

Every node now compares the rank shipped with the task to its own rank. It it doesn't match, nothing is 
done. If it matches, the node needs to process the task. It does so and returns the result to the submitter.

When the submitter receives the response (RESULT), it multicasts a REMOVE message across the 
cluster. Upon reception of REMOVE(T), every node removes T from its hash map

If a node X crashes (or leaves gracefully), we know which tasks were assigned to it by looking up the 
tasks in the hash map, keyed by X. All tasks which are still present in the hash map have not yet been 
processed and need to be re-executed, this time by a different node. This is done by comparing the rank 
shipped with the task to the node's rank and executing it if a node's own rank matches it.

If a master M crashes after having submitted a few tasks but not yet having received the results, the 
slaves remove all tasks submitted by M, because M won't need the results anymore3.

Fig. 2 shows how task distribution in a cluster looks like. 

The cluster consists of nodes A, B, C and D. Clients can access any one of them. A task submitted for 
example to B by a client might assign 23 to the task. B then multicasts an EXECUTE(23, TASK) 
message to all nodes in the cluster, and every node adds task #23 to its cache. 

However, the only node processing task #23 is A (to which 23 happens to map to), which then sends the 
result as a RESULT(23, OBJ) to B. B returns the result OBJ to the client and multicasts a 
REMOVE(23) message to the cluster, which causes all nodes to remove task #23 from their caches.

Had A crashed during processing of task #23, some other node would have taken over, processed the 
result and sent it back to B.

3 This could of course be changed to have any submitted task be executed even if its original submitter crashed



Code
Let's look at how we implement this4. We'll write a Server class which has the main() loop and accepts 
requests which are to be distributed across the cluster. This mimics real clients sending requests to any 
cluster node. We can then start a number of Server processes, across the cluster or on the same host (for 
the demo).

First, we need an ID (ClusterID) which is unique across the cluster and which is used to determine 
whether a node accepts a task. An instance of ClusterID is created for every task. The class looks as 
follows:

public  class  ClusterID  implements  Streamable  {

    private  Address  creator;

    private   int  id;

4 All code examples have been edited for brevity, e.g. no exception or error handling is shown.

Illustration 2: Task distribution in a cluster

A

DC

B

EXECUTE(23)

Clients

EXECUTE(23)

RESULT(23)

EXECUTE(23)



    private  static  int  next_id=1;

    public  static  synchronized  ClusterID  create(Address  addr)  {

        return  new  ClusterID(addr,  next_id++);

    }

}

Implementations of Streamable let JGroups marshal and unmarshal objects more efficiently.

A ClusterID has the address of the node which created it and an ID which is incremented on each 
create() call. If we only used IDs, because every node could potentially submit tasks, we might end up 
with node A submitting task #23 and node C submitting task #23, and this would lead to issues with 
task entries getting overwritten in the cache hash map Prefixing the ID with its creator would yield 
A::23 and C::23, which are 2 different tasks.

Then, we define the Master and Slaves interfaces:

public  interface  Master  {

    Object  submit(Task  task,  long  timeout)  throws  Exception;

}

public  interface  Slave  {

    Object  handle(Task  task);

}

These interfaces are implemented by our Server class which does the bulk of the work. 

The submit() method takes a task (see below) and a timeout. It can throw an exception or return a 
result. Note that both the Task subclasses and the result have to be serializable or Streamable, because 
they are potentially sent across the network to get executed.

The handle(Task t) method is invoked at the slave, which is the worker node which decides that it will 
handle the task. It typically uses the data shipped with a task (subclass) and returns an object which 
needs to be serializable because in most cases, it will be sent back to the submitter via the network.

Next, we define the Task:

public  interface  Task  extends  Serializable  {

    public  abstract  Object  execute();

}

A task contains all of the necessary data that is shipped to a slave. The execute() method then uses that 
data to perform the processing and returns a result which is sent back to the master who submitted that 



task.

Now that we've defined all the ancillary classes and interfaces, let's start writing the Server:

public  class  Server  extends  ReceiverAdapter  implements  Master,  Slave  {

    private  String  props="udp.xml";

    private  Channel  ch;

    private  final  ConcurrentMap<ClusterID,Entry>  tasks;

    private  final  ExecutorService  thread_pool=Executors.newCachedThreadPool();

    private  View  view;

    private  int  rank=-1;

    private  int  cluster_size=-1;

    public  void  start()  throws  Exception  {

        ch=new JChannel(props);

        ch.setReceiver(this);

        ch.connect("dzone-demo");

    }

    public  void  stop()  {

        thread_pool.shutdown();

        ch.close();

    }

Server implements the Master and Slave interfaces, which means that a Server can act both as a client 
(Master) and server (Slave). So the name “Server” is actually somewhat of a misnomer, as this is 
clearly more of a peer than a server !

Next, we need a few instance variables. For instance, we need a JGroups channel (ch) which needs to 
be configured with properties (props) defining the configuration of the protocol stack.

We also need a thread pool (thread_pool) to execute the tasks we receive to process. Here, we chose the 
a simple pool which creates new threads when needed and removes threads that have been idle for 
more than 60 seconds.

The 'tasks' hash map is the cache for received tasks. It is keyed by ClusterId and the values are Entry 
instances (see below).

The view, rank and cluster_size variables are needed to determine whether or not to process a received 
task. More on this later.

In start(), we create a JChannel based on the properties passed to server and connect it, which causes it 
to join the cluster. Also, we set a Receiver, which means that we'll get receive(Message) and 
viewAccepted(View) callbacks whenever a message or view change is received.



In stop(), we shut down the thread pool and close the channel, causing this node to leave the cluster 
gracefully. Everybody else connected to this cluster will get a view change (viewAccepted() callback) 
notifying them of the termination of this node.

The Entry class (inner class of Server) is shown below:

private  static  class  Entry  {

    private  final  Task  task;

    private  final  Address  submitter;

    private  final  Promise<Object>  promise=new  Promise<Object>();

}

It is a wrapper for the task, the address of the submitter and the promise (similar to a Future) used to 
block on until the result has been received. The address of the submitter of the task is needed to send 
the result back. This is necessary when a node other than the originally assigned one takes over and 
processes a task.

Another inner class of Server is Request, which is used to send requests and responses between 
submitters (masters) and slaves:

    public  static  class  Request  implements  Streamable  {

        static  enum Type {EXECUTE,  RESULT,  REMOVE};

        private  Type  type;

        private  Task  task;

        private  ClusterID  id;

        private  Object  result;

    }

A Request also implements Streamable (implementation not shown) which allows for more efficient 
marshalling. We're sending 3 types of requests around:

1. EXECUTE: multicast by the submitter to all nodes of the cluster. It contains the task and a 
ClusterID, generated by the submitter and used by the slave to determine whether or not to 
accept the task. Note that only one slave in the entire cluster will handle a given task.

2. RESULT: contains the ClusterID and an Object (can be null if nothing is returned, e.g. calling a 
void method). This is unicast from the slave to the master which submitted the task.

3. REMOVE: only contains the ClusterID and is multicast by the submitter of a task T after the 
result for T has been received. Everyone removes the task from their cache upon reception of 
this message.

Now that we have all the bits and pieces in place, it is actually time to look at the submit() method:



    public  Object  submit(Task  task,  long  timeout)  throws  Exception  {

        ClusterID  id=ClusterID.create(ch.getLocalAddress());

        try  {

            Request  req=new  Request(Request.Type.EXECUTE,  task,  id,  null);

            byte[]  buf=Util.streamableToByteBuffer(req);

            Entry  entry=new  Entry(task,  ch.getLocalAddress());

            tasks.put(id,  entry);

            ch.send(new  Message(null,  null,  buf));

            return  entry.promise.getResultWithTimeout(timeout);

        }

        catch(Exception  ex)  {

            tasks.remove(id);  //  remove  it  again

            throw ex;

        }

    }

This is an implementation of the Master interface. It generates a ClusterId and constructs a Request 
instance of type EXECUTE, containing the task and the ClusterID.

Util.streamableToByteBuffer() is a helper method provided by JGroups, which takes a Streamable 
object and marshals it into a byte[] buffer. Remember that JGroups can only ship byte[] buffers over the 
wire.

Then we add the task to our local cache, create a message with destination of null (= multicast) and the 
marshalled request.

Finally we block on the promise of Entry until a result has been received or we get an exception (e.g. a 
timeout).

The Slave part for handling of received tasks is simple:

    public  Object  handle(Task  task)  {

        return  task.execute();

    }

We simply take the task and call execute() on it.

In the Server.start() method, we created a JChannel and set the Receiver to be the Server itself. We 
implement 2 methods: receive(Message) and viewAccepted(View). The receive() method is shown 
below:

public  void  receive(Message  msg)  {

    Request  req=(Request)Util.streamableFromByteBuffer(Request.class,  msg.getBuffer());



    switch(req.type)  {

        case EXECUTE:

            handleExecute(req.id,  msg.getSrc(),  req.task);

            break;

        case  RESULT:

            Entry  entry=tasks.get(req.id);

            entry.promise.setResult(req.result);

            multicastRemoveRequest(req.id);

            break;

        case REMOVE:

            tasks.remove(req.id);

            break;

    }

}

The receive() method handles all requests and responses. Upon reception of a message, we need to grab 
its byte[] buffer, unmarshal it into a Request and then handle the request. We use the JGroups helper 
method Util.streamableFromByteBuffer() to do this.

On reception of EXECUTE, we call handleExecute(), passing the ClusterID, the submitter and the task 
to it.

On reception of RESULT (sent by a slave), we set the result in the promise, releasing the blocked 
submitter of the task. Then, we multicast a REMOVE request.

On reception of REMOVE, we simply remove the task from our cache.

The handleExecute() method checks if a node should accept the task and, if yes, passes it to a thread 
pool to execute:

    private  void  handleExecute(ClusterID  id,  Address  sender,  Task  task)  {

        tasks.putIfAbsent(id,  new  Entry(task,  sender));

        int  index=id.getId()  %  cluster_size;

        if(index  !=  rank)

            return;

        thread_pool.execute(new  Handler(id,  sender,  task);

    }

First, we add the task to our tasks cache, keyed by the ClusterID5. Then we take the ClusterID's ID, 
modulo the number of nodes in the cluster. This is the rank of the node which should execute the task. 
If it matches our own rank, we create a Handler and pass it to the thread pool to be executed on a 
separate thread, otherwise we return from handleExecute().

5 This is only done if we're not the submitter of the task, because in this case the task will already be in the cache.



The Handler class is shown below:

    private  class  Handler  implements  Runnable  {

        final  ClusterID  id;

        final  Address  sender;

        final  Task  task;

        public  void  run()  {

            Object  result=null;

            try  {

                result=handle(task);

            }

            catch(Throwable  t)  {

                result=t;

            }

            Request  response=new  Request(Request.Type.RESULT,  null,  id,  result);

            byte[]  buf=Util.streamableToByteBuffer(response);

            ch.send(new  Message(sender,  null,  buf));

        }

    }

It executes the task against the Slave interface (handle() method) and stores the result. If there is an 
exception, then the exception (which is serializable by default) is stored as result instead.

Then a Response object is created from the result. Util.streamableToByteBuffer() is called to generate a 
byte[] buffer from the response, which is then placed into a Message and sent via the channel to the 
original submitter of the task.

Our code is now almost complete. The only thing missing is the handling of membership changes. 
Remember that we need to resubmit tasks from failed nodes, or from nodes who left gracefully, to other 
nodes. This is done in viewAccepted(View):

    public  void  viewAccepted(View  view)  {

        List<Address>  left_members=Util.leftMembers(this.view,  view);

        this.view=view;

        Address  local_addr=ch.getLocalAddress();

        cluster_size=view.size();

        Vector<Address>  mbrs=view.getMembers();

        for(int  i=0;  i  <  mbrs.size();  i++)  {

            Address  tmp=mbrs.get(i);

            if(tmp.equals(local_addr))  {

                rank=i;



                break;

            }

        }

        if(left_members  !=  null  &&  !left_members.isEmpty())  {

            for(Address  mbr:  left_members)

                handleLeftMember(mbr);

        }

    }

First, we determine which members left between the new and previous views. This is done with 
Util.leftMembers(), which returns a list of addresses of nodes which left between 2 views.

Then we set the local address (Channel.getLocalAddress()), cluster_size and view.

Next, the rank is computed by iterating through the new membership and comparing each element 
against the local address. On a match, our rank is the iteration counter. For example, if we have a 
membership of {A,B,C,D,E}, and we're C, then our rank will be 2.

Finally, we need to determine whether any nodes left since the previous view, and whether there are 
any tasks to take over from them. This is done by iterating through all left members (if there are any) 
and calling handleLeftMember(), which is shown below:

private  void  handleLeftMember(Address  mbr)  {
    for(Map.Entry<ClusterID,Entry>  entry:  tasks.entrySet())  {

        ClusterID  id=entry.getKey();

        int  index=id.getId()  %  cluster_size;

        if(index  !=  rank)

            return;

        Entry  val=entry.getValue();

        if(mbr.equals(val.submitter))  {

            continue;

        }

        execute(id,  val.submitter,  val.task);

    }

}

This method iterates through all cache entries and compares the ID (modulo cluster size) to our own 
rank. If it matches, we execute the task (unless the submitter itself left, in which case we drop the 
task)6.

Note that both rank and cluster_size might change on receiving a new view. Both assignments need to 
happen before handleLeftMember() is called, as this method uses the 2 variables. For example, if we 

6 For the purpose of the demo. This could also be changed, as it probably makes sense in some cases to execute a task 
even if the submitter crashed.



have cluster {A,B,C,D,E}, then C has rank=2 and D has rank=3. If C crashes, D's and E's ranks change: 
D's rank is now 2. This means that D will process all of the tasks that C was processing and which 
hadn't completed by the time C crashed (otherwise C would have removed them).

The code above has a deficiency though: assuming we have a cluster of {A,B,C,D} and A crashes, then 
the ranks of B, C and D change: B from 1 to 0, C from 2 to 1 and D from 3 to 2.

This means that B, C and D will now execute tasks which were already being worked on by other 
nodes. For example, C will re-execute D's tasks and B will re-execute C's tasks. This is not incorrect, as 
the submitter of a task will remove the task when completed. So, when receiving a result R from a 
slave for a task which was already completed and therefore removed, the submitter just drops R.

This is not wrong, but leads to spurious and unneeded processing. A better way to define the rank 
would be to use consistent hashing ([2]), which minimizes changes to the rank and therefore re-
execution of tasks already being worked on by other nodes.

Our code is now complete. The last thing to do is to write the driver code, which we also add to Server:

    public  static  void  main(String[]  args)  throws  Exception  {

        Server  server=new  Server(props);

        server.start();

        loop(server);

    }

    private  static  void  loop(Server  server)  {

        boolean  looping=true;

        while(looping)  {

            int  key=Util.keyPress("[1]  Submit  [2]  Submit  long  running  task  [q]  Quit");

            switch(key)  {

                case  '1':

                    Task  task=new Task()  {

                        public  Object  execute()  { 

                            return  new Date();                       

                        }

                    };

                    log("<==  result  =  "  +  server.submit(task,  30000));

                    break;

                case  '2':

                    task=new Task()  {

                        public  Object  execute()  {

                            Util.sleep(15000);

                            return  new Date();

                        }

http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/


                    };

                    log("<==  result  =  "  +  server.submit(task,  30000));

                    break;

            }

        }

        server.stop();

    }

The main() method creates a Server and starts it. The loop() method waits for a key press and then 
submits a short running (on '1') or long running (on '2') task. The task simply returns a new Date with 
the current time. The long running task sleep for 15 seconds before returning the date. When 'q' is 
pressed, we stop the server gracefully and return.

Demo
Let's see whether this thing works ! The demo JAR can be downloaded here.

Let's start some instances and submit some tasks. To start an instance, we run:

[linux]/home/bela/JGroupsArticles/dist$  java  -Djgroups.bind_addr=192.168.1.5  -jar  demo.jar 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

GMS:  address  is  192.168.1.5:33795

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

view:  [192.168.1.5:33795|0]  [192.168.1.5:33795]

my  rank  is  0

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

Replace the IP address set with -Djgroups.bind_addr with the one of a valid NIC. If you don't set this 
property, JGroups picks a random NIC.

We can see that we're the first node in the cluster, our local address is 192.168.1.5:33795 and our rank 
is 0.

When we submit a task, we see that it is executed by our self, since we're the only node in the cluster:

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

1

==>  submitting  192.168.1.5:33795::1

executing  192.168.1.5:33795::1

<==  result  =  Tue  Sep  09  12:38:55  CEST 2008

http://www.jgroups.org/javagroupsnew/docs/taskdistribution/demo.jar


Let's start a second instance:

[linux]/home/bela/JGroupsArticles/dist$  java  -Djgroups.bind_addr=192.168.1.5  -jar  demo.jar 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

GMS:  address  is  192.168.1.5:41232

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

view:  [192.168.1.5:33795|1]  [192.168.1.5:33795,  192.168.1.5:41232]

my  rank  is  1

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

We can see that the view now has 2 members: 192.168.1.5:33795 with rank=0 and 192.168.1.5:41232 
(the second instance started) with rank=1. Note that for this demo, we start all instances as separate 
processes on the same host, but of course we would place those processes on different hosts in real life.

If we now go back to the first instance and submit 2 tasks, we can see that they are assigned to both 
instances:

1

==>  submitting  192.168.1.5:33795::2

executing  192.168.1.5:33795::2

<==  result  =  Tue  Sep  09  12:43:48  CEST 2008

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

1

==>  submitting  192.168.1.5:33795::3

<==  result  =  Tue  Sep  09  12:43:49  CEST 2008

Task #2 was executed by our self, but task #3 was executed by the second instance (this can be verified 
by looking at the output of the second instance).

Let's now start a third instance:

[linux]/home/bela/JGroupsArticles/dist$  java  -Djgroups.bind_addr=192.168.1.5  -jar  demo.jar 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

GMS:  address  is  192.168.1.5:45532

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

view:  [192.168.1.5:33795|2]  [192.168.1.5:33795,  192.168.1.5:41232,  192.168.1.5:45532]

my  rank  is  2

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

We see that the cluster now has 3 nodes, and the rank of the freshly started instance is 2.

Now we'll submit a long running task T and - before T completes - kill the node which is processing T.



Let's submit that task on the third instance:

[1]  Submit  [2]  Submit  long  running  task  [3]  Info  [q]  Quit

2

==>  submitting  192.168.1.5:45532::1

Because the second instance has rank=1, task #1 from 192.168.1.5:45532 is executed on that instance.

Before the 15 seconds elapse, let's kill the second instance. After a few seconds, the output of the third 
instance shows the following:

view:  [192.168.1.5:33795|3]  [192.168.1.5:33795,  192.168.1.5:45532]

my  rank  is  1

****  taking  over  task  192.168.1.5:45532::1  from  192.168.1.5:41232  (submitted  by 
192.168.1.5:45532)

executing  192.168.1.5:45532::1

sleeping  for  15  secs...

done

<==  result  =  Tue  Sep  09  12:55:10  CEST 2008

This might be somewhat surprising, but correct. Let's see what's happening.

First we get a view change, the new view is 192.168.1.5:33795, 192.168.1.5:45532. This means that the 
third instance has now rank=1, which is exactly the rank the killed instance had. Therefore when task 
#1 is reassigned, it is the third node 192.168.1.5:41232 which executes #1.

This happens to be the same node as the submitter, but that's okay: since we only have 2 node left in 
our cluster, there is a 50% chance of the submitter processing its own task. If we had more nodes in the 
cluster, the likelihood of a submitter processing its own task would decrease7.

Conclusion

We implemented a simple, highly decentralized, clustered task distribution system in roughly 500 lines 
of code and 5 classes. The system is failure resilient, because all nodes are peers and there's no central 
server. 

All peers are equal (every peer can act as both master and slave) and tasks are grabbed by a node based 
on an ID assigned by the submitter (master). 

Crashes or graceful termination of nodes doesn't lead to missing tasks, as the system re-balances itself 
and assigns orphaned tasks to another node in the cluster.

7 We could of course also change the system, such that a submitter never executes its own tasks (unless there are no other 
nodes in the cluster).



The system is so small because it runs on top of JGroups. Had we written it without JGroups, we would 
have had to implement the following functionality ourselves:

● Cluster membership and failure detection: we need to know when the membership changes, and 
all nodes in a cluster need to get these views in exactly the same order

● Simulcasting (with UDP datagrams): fragmentation (if a task or result is greater than 65K) and 
retransmission (UDP datagrams are lost), plus suppression of duplicate messages  (we cannot 
receive the same task multiple times !).

● Simple switching between transports (UDP, TCP), and configuration/customization of the 
transport: e.g. adding compression or encryption

The current task distribution is far from complete (after all, this is just a demo of what can be done with 
JGroups !); possible further improvements include:

● Implementation java.util.concurrent.ExecutorService. This would extend the in-VM thread pool 
to become a clustered thread pool, where tasks are executed not only by threads in the same 
JVM, but also by threads on different hosts. This would allow masters to submit tasks (for 
example a collection of tasks) and to wait for their completion later. In our current solution, the 
thread of the caller of submit() is blocked until a timeout occurs or the result becomes available.

● Not all nodes store the task, but only a subset of the nodes. When a node X crashes, we ask 
everyone for the tasks assigned to X, and these are returned by the nodes who stored them.

● Use random numbers to create ClusterIDs rather than monotonically increasing ints. Currently, 
we use a round robin ID allocation scheme. While this is pretty good at distributing all tasks 
evenly, it might be better in some cases to assign weights to individual cluster nodes, according 
to number of cores, memory etc. Thus, tasks could be assigned more optimally, whereas in the 
current solution we assign all tasks evenly, which means slower hosts get the same number of 
tasks as faster hosts. We should probably externalize the policy which creates the IDs and/or 
picks the nodes, so it can be replaced.

Download
The full demo code can be downloaded here ([3]).

Links

[1] http://www.jgroups.org

[2] http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing

[3] http://www.jgroups.org/javagroupsnew/docs/taskdistribution/demo.jar

http://www.jgroups.org/javagroupsnew/docs/taskdistribution/demo.jar
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing
http://www.jgroups.org/
http://www.jgroups.org/javagroupsnew/docs/taskdistribution/demo.jar

	A simple clustered task distribution system
	JGroups
	Overview
	API

	Task distribution system
	Code
	Demo
	Conclusion
	Download
	Links

